
AD-A273 644 . . -

DTIC
ELECTESA 'ID EC 1 3 1993 .i

REUSE-DRIVEN SOFTWARE PROCESSES
GUIDEBOOK

SPC-92019-CMC

VERSION 02.00.03

NOVEMBER 1993

93-29999

This documernt rC-s be-en apPzoved
for public rzlea-= and sal:e; its
distribution is :n-r.ie 4

93 12 O8 03

Best
Available

Copy

REPORT DOCUMENTATION PAGE = =isf
mmbe mid m••W Ie de emeed, md mm•p~s miuido lie soft d WAmedee. SAi comau mumo" _-- ev inmGmndm

Wb Waei 1im 1-.hdmksunwedma hr 1ftd Iabeds ieWu~ MsdIIn 11 ies 0h, DhsWbrhdnbisied. sNii idftwpuR 131 Jab..,,,,m ... ,b * ..4. VA M2-13.m.,d dii. O l to mid . , .. , p34OIl,. OuaON= d A-
1. MCY USE oNLY (L,,A, &, ZRTX TE ERTTWEA A•D,•0ES oWM

November 1993 Technical Report
14.TPLE ANDSUBI-E S. FUDI NUMBERS

Reuse-Driven Software Processes Guidebook

&. AUT•OR(S)
Produced by Software Productivity Consortium under contract to
Virginia Center of Excellence. G MDA972-92-J-1018

7. PERMING OWRAN.AT1,N NAME.S(S) AND ADRESS(ES) 8. PEFORMM OFKMNMT
Virginia Center of Excellence IKORTNUMI

SPC Building
2214 Rock Hill Road SPC920219.CMC,
Hemdon, VA 22070 Version 02.00.03

9. SPONSORIG MONITORNG AEINCY NAMEMS) AND ADORESS(ES) 10. SPONSQ•OR IMOIXOAIG
ARPA/SISTO AGoCYRER'NtUa
Suite 400
801 N. Randolph Street
Arlington, VA 22203

11. SUPPLEMBETARY NOTES
Supersedes the Domain Engineering Guidebook (DTIC # ADA 259404). Can be used in
conjunction with the Reuse Adoption Guidebook (DTIC # ADA ")59405)

12L. DISTRIBUTION / AVALABLT STATEMENT 12. DISTRITION CODE

No Restrictions 1

13. ABSTRACT (Maximum 200 words)
The Reuse-Driven Software Processes Guidebook describes the Synthesis family of reuse-driven
software development processes. In particular, it prescribes the practice for two example members of
this family, illustrating the different stages of reuse capability that can be addressed by this family.
Development organizations choose the process that matches theif reuse goals.

Synthesis is a comprehensive, business-area-level solution to problems of software productivity and
quality in the building of systems to meet diverse and changing needs. Synthesis is most appropriate
for development organizations that produce many similar systems or single unique systems with
highly-volatile requirements during system development and maintenance. Synthesis is a systematic
approach to software development founded on the belief that the resources of a business-area
organization should -be managed not only to meet the immediate needs of customers, but also as an
investment in future capability. This guidebook serves as a detailed guide to the practice of Synthesis,
addressing all activities and work products related to the production of software, in support of the
needs and objectives of a business-area organization and its customers.
14. SUBJECTTERS 15. INUMBEROF PAGES

Software reuse, application engineering, domain engineering, reuse-driven 397
development, reuse-oriented development, iterative process, process family 16. PRCECODE

17. SECURIY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPORT OF fHIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 290 (Rev. 2-9)

Prleoewd by ANSI Sitd MI

REUuVUSE -DRIVEN SOFTWARE
PROCES SES
GUIDEBOOK

SPC-92019-CMC

Accesion For

VERSION 02.00.03 NTIS CRA&s

NOVEMBER 1993 J-sific ifW

By

Pwdoued by th~e Ai. .4 c
SOFTWARE PRODUCTIVITY CONSORTIUM SERVICES CORPOR.ATON do

under contract to th. Dist specialfo
VIRGINIA CENTER OF EXCELLENCE pca

FOR SOFTWARE REUSE AND TECHNOLOGY TRANSFER A I
PCaBulding

2214 Rock Hill Road
Hernidon, Vvrgni 22070 DTIC QUALM 1TY DECTLPD 3

Cq*7%igt G) 1992 I, 93 Sctwam hout~div*~ Coosrium Serices CaporaidiHnon, I~r~virginia hm i to we6 cop,
inodiy~, and dwtrIlxo this material for any purpose and witdt fee a hereby raipnte'oisentwith 48 FR 227 and 252,and

prvddthat the above copyri ntic ap;pear.n all copies adthat both this copyi*r noice and thisl pi ini notice apa
in a mtgdocuinetatio. Tismaterdia bmd iipsit umwomk spcurd by the Mv=Wanod mdihPkojeca Ageay der
Chant bMDA97292.J-101& The content does not necemm*ril feot the pI *-*- or the policy of the U. S&Government. and no

CdIendoniement ixwWl be inferred. The naue Sfware Phrofuctivity Quonsrikun dad not be used wn advaiiak or pubidly
pertaking to this material orothe vew thout te pior written pa onofSoftwe roxdity~owrimcwhn, nSOFIWARE
PRODUC~IVyn CCONSO~RIU14 INC. AND SOFTWARE PRODUCI1VrIY CONSORMIUM SERVICES
CORPORATION MAKE NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUETABHXI OF THIS
MATERAL, FOR ANY PRPOSE OR ABOUT ANY OTHIER MATIER, AND THIS MATERIAL IS PROVIDE
WiTHOUT EXP'RESS OR IMPLIED WARRANTY OF ANY KIND

ADARTSO is a service mark of the Software Productiit Consotium. Inc

Interleaf is a trademark of Interleaf, Jnc

UNIX as a registered trademark of UNIX System Laboratories L=c

WordPerfect is a registered trademark of WordWerfect Corporation.

77". -7-77 '.. 7 777-9 -7

CONTENTS

ACKNOWLEDGMENTS .. xix

PART SYN: OVERVIEW

OV.1. INTRODUCTION ... SYN-1

1.1 Document Purpose, Scope, and Audience Syn-1

1.2 Document Status and Evolution Syn-2

1.3 Related Publications .. Syn-2

1.4 Document Structure ... Syn-3

1.5 Using This Guidebook ... Syn-4

1.6 Conventions and Notation .. Syn-7

OV.2. FUNDAMENTALS OF SYNTHESIS SYN-11

2.1 Key Principles .. Syn-ll

2.1.1 Program Families .. Syn-11

2.1.2 Iterative Processes ... Syn-11

2.1.3 Specifications .. Syn-12

2.1.4 Abstraction-Based Reuse .. Syn-12

2.2 Context for Synthesis .. Syn-12

2.2.1 Business Objectives ... Syn-13

2.2.2 System Engineering Practices Syn-13

2.2.3 Objectives of a Software Engineering Process Syn-13

2.3 An Overview of Synthesis .. Syn-14

2.3.1 Defining a Tailored Process Syn-16

2.3.2 An Opportunistic Synthesis Process Syn-17

ru

2.3.3 An Integrated Synthesis Process Syn-18

2-3.4 A Leveraged Synthesis Process Syn-20

2.3.5 An Anticipating Synthesis Process Syn-22

PART OPP: OPPORTUNISTIC SYNTHESIS

OV. OVERVIEW OF AN OPPORTUNISTIC SYNTHESIS PROCESS Opp-1

1. Underlying Assumptions ... Opp-1

2. Software Development With an Opportunistic Synthesis Process Opp-3

2.1. Organizational Perspective Opp-3

2.2. Application Engineering Perspective Opp-4

2.3. Domain Engineering Perspective Opp-4

2.4. An Example Scenario ... Opp-6

DE. DOMAIN ENGINEERING OVERVIEW Opp-9

1. Getting Started ... Opp-9

2. Product Description ... Opp-10

3. Process Description ... Opp-10

4. Interactions With Other Activities Opp-13

DE.1. DOMAIN MANAGEMENT ACTIVITY Opp-l5

1. Getting Started ... Opp-15

2. Product Description ... Opp-16

3. Process Description ... Opp-17

4. Interactions With Other Activities Opp-2 2

DE.2. DOMAIN ANALYSIS ACTIVITY Opp-25

1. Getting Started ... Opp-25

2. Product Description ... Opp-26

3. Process Description ... Opp-26

4. Interactions With Other Activities Opp-29

DE.2.1. DOMAIN DEFINITION ACTIVITY Opp-31

iv

1. Getting Started ... Opo.3l

2. Product Description ... Opp31

3. Process Description ... Opp-38

4. Interactions With Other Activities Opp.43

DE.2.2 DOMAIN SPECIFICATION AC CIVITY Opp45

1. Getting Started ... Opp45

2. Product Description ... Opp-46

3. Process Description ... Opp-46

4. Interactions With Other Activities Opp-50

DE.2.2.1. DECISION MODEL ACTIVITY Opp-53

1. Getting Started ... Opp-5 3

2. Product Description ... Opp- 5 3

3. Process Description ... Opp-56

4. Interactions With Other Activities Opp- 59

DE.2.2.2. PRODUCT REQUIREMENTS ACTIVITY Opp-61

1. Getting Started ... Opp-6 1

2. Product Description ... Opp-61

3. Process Description ... Opp-64

4. Interactions With Other Activities Opp-67

DE.2.2.3. PROCESS REQUIREMENTS ACTIVITY Opp-69

1. Getting Started ... Opp-6 9

2. Product Description ... Opp-69

3. Process Description ... Opp-70

4. Interactions With Other Activities Opp-72

DE.2.2.4. PRODUCT DESIGN ACTIVITY Opp-75

1. Getting Started ... Opp-75

2. Product Description ... Opp-75

V

3. Process Description ... Opp-76

4. Interactions with Other Activities Opp-78

DE.2.2.4.1. PRODUCT ARCHITECT'URE ACTIVITY Oppl

1. Getting Started ... Opp-81

2. Product Description ... Opp-82

3. Process Description ... Opp-84

4. Interactions With Other Activities Opp-86

DE.2.2.4.2. COMPONENT DESIGN ACTIVITY Opp49

1. Getting Started ... Opp-89

2. Product Description ... Opp-89

3. Process Description ... Opp-91

4. Interactions With Other Activities Opp-93

DE.2.7.' . GENERATION DESIGN ACTIVITYN.................. Opp-95

1. Getting Started ... Opp-95

2. Product Description ... Opp-96

3. Process Description ... Opp-9 8

4. Interactions With Other Activities Opp-100

DE.2.3. DOMAIN VERIFICATION ACTIVITY Opp-103

1. Getting Started ... Opp-103

2. Product Description ... Opp-10 4

3. Process Description ... Opp-104

4. Interactions With Other Activities Opp-10 8

DE.3. DOMAIN IMPLEMENTATION ACTIVITY Opp-109

1. Getting Started ... Opp-109

2. Product Description ... Opp-11O

3. Process Description ... Opp-11 0

4. Interactions With Other Activities Opp-111

vA

DE.3.1. PRODUCT IMPLEMEINTATION ACrVIY Opp-113

1. Getting Started .. Opp-113

2. Product Description ... Opp-114

3. Process Description ... Opp-114

4. Interactions With Other Activities Opp-117

DE.3.1.1. COMPONENT IMPLEMENTATION ACTWI'TY Opp-119

1. Getting Started Opp-119

2. Product Description Opp-120

3. Process Description ... Opp-122

4. Interactions With Other Activities Opp-127

DE.3.1.2. GENERATION IMPLEMENTATION ACTIVITY ... o......... Opp-129

1. Getting Started Opp-129

2. Product Description ... Opp-129

3. Process Description Opp-130

4. Interactions With Other ActivitiesOpp-132

DE.3.2. PROCESS SUPPORT DEVELOPMENT ACTIVITY Opp-135

1. Getting Started .. Opp-135

2. Product Description ... Opp-136

3. Process Description ... Opp-137

4. Interactions With Other Activities Opp-141

DE.4. PROJECT SUPPORT ACTIVITY Opp-143

1. Getting Started .. Opp-143

2. Product Description .. Opp-144

3. Process Description .. Opp-144

4. Interactions With Other Activities Opp-147

AE. APPLICATION ENGINEERING OVERVIEW R..Eo.................. Opp-14 9

1. Getting Started Opp-149

CoutaIs

2. Product Description .. Opp-150

3. Process Description ... Opp-150

4. Interactions With Other Activities Opp-156

PART LEV: LEVERAGED SYNTHESIS

OV. OVERVIEW OF A LEVERAGED SYNTHESIS PROCESS Lev-1

1. Underlying Assumptions ... Lev-1

2. Software Development With a Leveraged Synthesis Process Lev-2

2.1. Organizational Perspective Lev-3

2.2. Application Engineering Perspective Lev-3

2.3. Domain Engineering Perspective Lev-3

2.4. An Example Scenario ... Lev-5

DE. DOMAIN ENGINEERING OVERVIEW Lev-7

1. Getting Started ... Lev-7

2. Product Description ... Lev-8

3. Process Description ... Lev-8

4. Interactions With Other Activities Lev-11

DE.1. DOMAIN MANAGEMENT ACTIVITY Lev-13

1. Getting Started ... Lev-13

2. Product Description ... Lev-14

3. Process Description ... Lev-16

4. Interactions With Other Activities Lev-22

DE.2. DOMAIN ANALYSIS ACTIVITY Lev-Z5

1. Getting Started ... Lev-25

2. Product Description ... Lev-26

3. Process Description ... Lev-26

4. Interactions With Other Activities Lev-29

DE.2.1. DOMAIN DEFINITION ACTIVITY Lev-31

viii

1. Getting Started ... L v-31

2. Product Description ... Lev-32

3. Process Description ... Lev-39

4. Interactions With Other Activities Lev-45

DE.2.2. DOMAIN SPECIFICATION ACIVTY Lev47

1. Getting Started ... Lev-47

2. Product Description ... Lev-48

3. Process Description ... Lev-48

4. Interactions With Other Activities Lev-51

DE.2.2.1. DECISION MODEL ACTIVITY Lev-55

1. Getting Started ... Lev-55

2. Product Description ... Lev-55

3. Process Description ... Lev-57

4. Interactions With Other Activities Lev-61

DE.2.2.2. PRODUCT REQUIREMENTS ACTIVITY Lev-63

1. Getting Started ... Lev-63

2. Product Description ... Lev-64

3. Process Description ... Lev-66

4. Interactions With Other Activities Lev-70

DE.2.2.3. PROCESS REQUIREMENTS ACTIVITY Lev-73

1. Getting Started ... Lev-73

2. Product Description ... Lev-74

3. Process Description ... Lev-75

4. Interactions With Other Activities Lev-78

DE.2.2.4. PRODUCT DESIGN ACTIVITY Lev-81

1. Getting Started ... Lev-81

2. Product Description ... Lev-81

Coautonl

3. Process Description ... Lev-82

4. Interactions With Other Activities Lev-84

DE.2.2.4.1. PRODUCT ARCHITECTURE ACTIVITY Lev-7

1. Getting Started ... Lev-87

2. Product Description ... Lev-88

3. Process Description ... Lev-90

4. Interactions With Other Activities Lev-93

DE.2.2.4.2. COMPONENT DESIGN ACTIVITY Lev.97

1. Getting Started ... Lev-97

2. Product Description ... Lev-97

3. Process Description ... Lev-99

4. Interactions With Other Activities Lev-101

DE.2.2.4.3. GENERATION DESIGN ACTIVITY Lev-103

1. Getting Started ... Lev-103

2. Product Description ... Lev-104

3. Process Description ... Lev-106

4. Interactions With Other Activities Lev-108

DE.2.3. DOMAIN VERIFICATION ACTIVITY Lev-111

1. Getting Started ... Lev-111

2. Product Description ... Lev-112

3. Process Description ... Lev-112

4. Interactions With Other Activities Lev-116

DE.3. DOMAIN IMPLEMENTATION ACTIVITY Lev-117

1. Getting Started ... Lev-117

2. Product Description ... Lev-117

3. Process Description ... Lev-118

4. Interactions With Other Activities Lev-119

x

DE.3.1. PRODUCT IMPLEMENTATION ACTIVITY Ley-121

1. Getting Started ... Lev-121

2. Product Description ... Lev-122

3. Process Description ... Lev-122

4. Interactions With Other Activities Lev-124

DE.3.l1.. COMPONENT IMPLEMENTATION ACTIVITY Lev-127

1. Getting Started ... Lev-127

2. Product Description ... Lev-128

3. Process DescriptionLev-130

4. Interactions With Other Activities Lev-135

11-.3.1.2. GENERATION IMPLEMENTATION ACTIVITY Lev-137

1. Getting Started ... Lev-137

2. Product Description ... Lev-137

3. Process Description ... Lev-138

4. Interactions With Other Activities Lev-140

DE.3.2. PROCESS SUPPORT DEVELOPMENT ACTIVITY Lev-143

1. Getting Started ... Lev-143

2. Product Description ... Lev-144

3. Process Description ... Lev-147

4. Interactions With Other Activities Lev-153

DE.4. PROJECT SUPPORT ACTIVITY Lev-155

1. Getting Started ... Lev-155

2. Product Description ... Lev-156

3. Process Description ... Lev-156

4. Interactions With Other Activities Lev-159

AE. APPLICATION ENGINEERING OVERVIEW Lev-161

1. Getting Started ... Lev-161

zi

Ca2teut.

2. Product Description ... Lev-162

3. Process Description .. Lev-162

4. Interactions With Other Activities Lev-166

APPENDIX: MATURITY ASSESSMENT AND FUTURE EVOLUTION..... App-i

LIST OF ABBREVIATIONS AND ACRONYMS Abb-1

GLOSSARY ... Glo-1

REFERENCES Ref-I

Zii

FIGURES

Figure OV.2-1. A Synthesis Process Syn-15

Figure OV.2-2. A Simple Example of an Application Engineering Process for
Opportunistic Reuse Syn-19

Figure OV.2-3. A Domain Engineering Process for Opportunistic
Reuse (Simplified) Syn-20

Figure OV.2-4. A Prototypical Application Engineering Process for Leveraged
Reuse .. Syn-22

Figure OV.2-5. A Domain Engineering Process for Leveraged Reuse Syn-23

Figure OV-1. Example Application Engineering and Domain Engineering
Interaction .. Opp-5

Figure OV-2. Blowup of a Work Product Family Development Activity Group Opp.6

Figure OV-3. Relationship Between Work Product Family Development and
Domain Engineering Opp-7

Figure DE-1. Domain Engineering Opp-11

Figure DE.1-1. Domain Management Process Opp-18

Figure DE.1-2. A Risk-Based Process for Increment Management Opp-20

Figure DE.2-1. Domain Analysis Process Opp-27

Figure DE.2.1-1. Domain Definition Process Opp-38

Figure DE.2.2-1. Domain Specification Process Opp.4 7

Figure DE.2.2.1-1. Decision Model Process Opp-56

Figure DE.2.2.2-1. Product Requirements Process Opp-6 4

Figure DE.2.2.3-1. Process Requirements Process Opp-71

Figure DE.2.2.4-1. Product Design Process Opp-7 7

Figure DE.2.2.4.1-1. Product Architecture Process Opp-84

Xii

Figure DE.2.2.4.2-1. Component Design Process Opp-92

Figure DE.2.2.4.3-1. Generation Design Process Opp-98

Figure DE.2.3-1. Domain Verification Process Opp-104

Figure DE.3-1. Domain Implementation Process Opp-111

Figure DE.3.1-1. Product Implementation Process Opp-115

Figure DE.3.1.1-1. Component Implementation Process Opp-123

Figure DE.3.1.2-1. Generation Implementation Process Opp-131

Figure DE.3.2-1. Process Support Development Process Opp-138

Figure DE.4-1. Project Support Process Opp-144

Figure AE-1. A Prototypical Application Engineering Process Opp-151

Figure OV-1. Interaction Between Application Engineering and (Simplified)
Domain Engineering Lev-4

Figure DE-1. Domain Engineering Lev-9

Figure DE.1-1. Domain Management Process Lev-16

Figure DE.1-2. A Risk-Based Process for Increment Management Lev-19

Figure DE.2-1. Domain Analysis Process Lev-27

Figure DE.2.1-1. Domain Definition Process Lev-40

Figure DE.2.2-1. Domain Specification Process Lev-49

Figure DE.2.2.1-1. Decision Model Process Lev-59

Figure DE.2.2.2-1. Instantiating Product Requirements Lev-66

Figure DE.2.2.2-2. Product Requirements Process Lev-67

Figure DE.2.2.3-1. Process Requirements Process Lev-76

Figure DE.2.2.4-1. Product Design Process Lev-83

Figure DE.2.2.4.1-1. Product Architecture Process Lev-92

Figure DE.2.2.4.2-1. Component Design Process Lev-100

Figure DE.2.2.4.3-1. Generation Design Process Lev-106

Figure DE.2.3-1. Domain Verification Process Lev-112

xW

Figure DE.3-1. Domaln lmprme oes L 118

Figure DE.3.1-1. Product Implemecttao Prooc Lev-123

Figure DE.3.1.1-1. Component ImplemenationtProcess Lev-131

Figure DE.3.1.2-1. Generation Implementation Process Lev-139

Figure DE.32-1. Process Support Development Process Lev-148

Figure DE.4-1. Project Support Process Lev-156

Figure AE-1. A Prototypical Application Engineering Process Lev-163

lv

TABLES

lhblc App-1. Maturity Scheme for Part Opp, Opportunistic Synthesis App-2

"Ibble App-2. Maturity Scheme for Part Lev, Leveraged Synthesis App.3

Zvi

EXAMPLES

Example OV.1-1. Hierarchy of Domain Eagineering Activitiei Syn-5

Example OV.1-2. Activity Descrlption Outline Syn6

Example DE2-I-1. Fragment ofTLC Doma Synopsis Opp-33

Example DE.2.1-2. Fragment of TLC Domain Oloa Opp-34

Example DE.21-3. Fragment of TLC Commonality Assmnptions Opp-36

Example DE.2.1-4. Fragment of TLC Variability Assumptions Opp-37

Example DE.2.2.1-1. Fragment of TLC Decision Model for the System/Segment
Work Product Family •.............................. pp-55

Example DE.2.2.2-1. Fragment of TLC Product Requirements for the System/Segment
Specification Work Product Family Opp-63

Example DE.2.2.4.1-1.Fragment of TLC Product Architecture for the
System/Segment Work Product Family Opp-83

Example DE.2.2.4.2-1.Fragment of TLC Component Design for the System/Segment
Specification Work Product Family Opp-91

Example DE.2.2.4.3-1.Fragment of TLC Generation Design for the System/Segment
Specification Work Product Family Opp-97

Example DE.3.1.1-1. Fragment of the TLC Component Implementation for the
System/Segment Specification Work Product Family Opp-122

Example DE.2.1-1. Fragment of TLC Domain Synopsis Lev-33

Example DE.2.1-2. Fragment of TLC Domain Glossary Lev-34

Example DE.2.1-3. Fragment of TLC Commonality Assumptions Lev-36

Example DE.2.1-4. Fragment of TLC Variability Assumptions Lev-37

Example DE.2.2.1-1. Fragment of TLC Decision Model Lev-58

Example DE.2.2.2-1. Fragment of TLC Product Requirements Lev-65

Bumple DE.2.24.1-1. Fragment of TLC Product Architecture Lev.89

Example DE..2.4.1-2. Fragment of TLC Product Architecture Lv-90

Example DE2.2.4.1-3 Fragment of 'ILC Product Architecture Lv-91

Eample DE.2.2.4.2-1. Famet of TLC Component Desip Lev-99

ERample DE224.3-1. Fragment of TLC Generation Design Lev-105

Fxample DE.2.2.43-2. rag~ment of TLC Generation Design Lev-106

Example DE3.1.1-1. Fragment of TLC Component Implementation Lev-130

zvii

ACKNOWLEDGMENTS

Rich McCabe was the project manager for this guidebook. Grady Campbell was the principal architect
of the Synthesis methodology and this guidebook. Neil Burkhard was the lead author for this release,
which is an extension of the 1992 Domain Engineering guidebook. Steve Wartik, Jim O'Connor, Joe
Valent, and Jeff Facemire were major contributors in writing and refining this or previous versions.

The Consortium wishes to thank the participants in the Rockwell pilot project for helping to refine
the ideas of Synthesis. Significant improvements have also come from interactions with the
participants of the Boeing STARS pilot project and attendees of Synthesis seminars.

The work of Roger Williams and Ted Davis on the Reuse Adoption Process and Reuse Capability
Model provided key insights on the context for reuse-driven software processes and how to character-
ize a family of processes. Special thanks to Kirsten Blakemore, Bob Hotkin, and Patricia Remade for
help in creating common definitions for shared Evolutionary Spiral Process and Reuse-Driven
Software Processes terminology.

In addition, Kirsten Blakemore, Steve Wartik, and Gary Moore provided insightful reviews and
helped to improve many aspects of this release of the guidebook. The Environment and Support Ser-
vices group of the Software Productivity Consortium provided superb help in producing the document.

sII

77m page intendomaly left blank.

PART SYN: OVERVIEW

Thu page intentionaly left blank

OV.1. INTRODUCTION

Synthesis is a methodology for constructin software systems as instances of a family of systems that
have similar descriptions (Campbell, Faulk, and Weiss 1990). This guidebook provides an introduc-
tion to the practice of the Synthesis methodology of software development. To the degree that you un-
derstand the essential similarities and variations in the systems you build, Synthesis enables you to
exploit those similarities to eliminate redundant work. A mature organization will be able to satisfy
the needs of its customers by answering the questions that are left open because of variations.

Synthesis focuses on your need both to deliver high quality products to customers and to accomplish
this profitably. To this end, a Synthesis process consists of two subprocesses: Application Engineering
and Domain Engineering. Application Engineering is how a group (or project) in your organization
creates a product to meet customer requirements. Domain Engineering is how your organization im-
proves productivity by creating a product family and a supporting Application Engineering process,
tailored for projects in your business area. The details of these subprocesses will differ depending on the
capabilities of your organization to practice reuse effectively.

Since projects in the same business area tend to build systems that satisfy similar needs, these systems
can be thought of as instances of a family. A fam.y of systems is a basis for a flexible approach to stan-
dardization that can accommodate diverse and changing needs. A business area whose objectives are
fulfilled by a family is a domain. Both the mission of an organization and the changing needs of its
customers determine the objectives of that business-area organization (i.e., product line). Synthesis
is a comprehensive, business-area-level solution to problems of software productivity, product quali-
ty, manageability, and responsiveness in the building of systems to meet diverse and changing needs.
Sytdthesis is a systematic approach to software development founded on the belief that the resources
of a business-area organization should be managed not only to meet the immediate needs of
customers, but also as an investment in future capability.

This guidebook describes two instances of a Synthesis family of processes, one that is opportunistic
in character, the other that is leveraged. The opportunistic process is oriented toward organizations
having modest reuse needs and capabilities. The leveraged process is oriented toward organizations
that can make a greater commitment to reuse and that have more advanced needs and capabilities.

1.1 DOCUMENT PURPOSE, SCOPE, AND AUDIENCE

This guidebook defines Synthesis, a sound approach for effective family-oriented software
development. It serves as a detailed guide to the practice of Synthesis and helps you begin to practice
it. As you gain experience in practicing Synthesis, you will be able to refine and modify this guidance
to meet the specific needs of your organization more effectively.

The scope of this guidebook includes all activities and work products related to production of software
and support of the needs and objectives of a business-area organization and its customers. Synthesis

syn-1

OV.1. Inrmduction

activity is initiated, via a Reuse Adoption process (Software Productivity Consortium 1992c), with the
establishment of organizational business objectives for a domain. In addition, various Synthesis activi-
ties require you to standardize management, requirements, design, implementation, and verification
and validation practices throughout your organization. Synthesis is an integrating framework for the
methods you choose to standardize your practices. Detailed descriptions of particular methods are
generally outside the scope of this guidebook. Such descriptions are available to you, often in other
Consortium publications that are referenced, where appropriate, throughout this guidebook. Stan-
dardization of these activities in terms of purpose and technique, using methods of your choice, is
essential to an effective Synthesis practice.

The audience for this guidebook includes business-area managers, project managers, and engineers
of all disciplines who work together to accomplish the objectives of a business-area organization.
Readers should be knowledgeable and experienced in the standard (or prevailing) software develop-
ment methods used in their organization, but are assumed to have no experience with Synthesis. Prac-
tical use of this release of the guidebook requires the participation of knowledgeable technologists.
Pilot projects are a requisite first step in transitioning to production use.

1.2 DOCUMENT STATUS AND EVOLUTION

Release of this guidebook ends the third year of a multiyear effort to develop a guidebook for a family
of Synthesis software processes for use by business-area organizations. This guidebook describes the
family, in overview, and two representative processes, in detail. The first of these processes is opportu-
nistic in character and assumes a low degree of organizational reuse capability and commitment; the
second process is oriented to leveraged reuse and assumes a moderately high degree of reuse capabili-
ty and commitment. Either process may be adopted as-is or tailored to fit the particular needs and
capabilities of your organization.

This guidebook is a revision of the Synthesis Guidebook (Software Productivity Consortium 1991a) and
its successor, the Domain Engineering Guidebook (Software Productivity Consortium 1992a). The cur-
rent name was chosen because the guidebook covers the entire software life-cycle process for a do-
main, comprising Application Engineering as well as Domain Engineering. Major extensions in this
version include an expanded characterization of the Synthesis process family, better integration with
work on the Evolutionary Spiral Process (ESP) Model (Software Productivity Consortium 1992b),
additional and improved activity descriptions, and improved examples.

Appendix A describes the levels of maturity through which the guidebook and each of its sections will
progress, and the current status of each. The Consortium sponsors pilot projects with industrial and
government partners for the exploration and adoption of Synthesis. Such projects are the
Consortium's primary vehicle for improving the content and quality of this guidebook.

1.3 RELATED PUBLICATIONS

Publication of this guidebook follows 4 years of work on Synthesis at the Consortium. The Consortium
has delivered a continuing series of other work products that describe various aspects of Synthesis.
Information about Synthesis is evolving as experience accumulates from pilot projects. Recently
delivered work products include:

Systematic Reuse: The Competitive Edge (Software Productivity Consortium 1991b), a video
that briefly explains the concepts and rationale for Synthesis with an orientation to the
concerns of executive management.

Syn-2

OVM. bu.room

"* Introduction to Synthesis (Campbell, Faulk, and Weiss 1990), which provides an informal
explanation of the Synthesis vision and its foundations.

" Introducing Systematic Reuse to the Command and Control Systems Division of Rockwell
International (O'Connor and Mansour 1992), which describes the experience of a pilot project,
at Rockwell, which adopted and is proceeding to institutionalize use of a Synthesis process in
their business organization.

" Domain Engineering Validation Case Study--Synthesis for the Air Traffic DisplaylCollision
Warning Monitor Domain (Burkhard 1992), which provides examples illustrating Synthesis
practices, nominally for the leveraged Synthesis process in Part Lev of this guidebook but
representative in many aspects of any Synthesis process.

Several recent publications are of interest, not only with respect to Synthesis but for reuse in general:

" Reuse Adoption Guidebook (Software Productivity Consortium 1992c), which describes a
process by which an organization can adopt a reuse process and the factors that guide
definition of the appropriate process.

"* Criteria for Comparing Reuse-Oriented Domain Analysis Approaches (Wartik and Prieto-Dfaz
1992), which discusses the factors that differentiate alternative approaches to domain analysis.

" Introducing Megaprogramming at the High School and Undergraduate Levels (Eward and
Wartik, to be published in 1994), which describes a project that worked with high schools and
universities to develop curricula and materials for introducing software reuse as
megaprogramming, in the form of a Synthesis process.

1.4 DOCUMENT STRUCTURE

This guidebook is organized into three parts. Part Syn is an overview of the Synthesis methodology
and associated family of processes. It includes:

"* An introduction

"• A description of the context and principles of a Synthesis practice

"* An explanation of how a particular Synthesis process is derived compatible with the organization's
reuse capabilities

This introduction defines standard notations and conventions used throughout all parts.

Parts Opp and Lev are each complete guidebooks for a particular Synthesis process. Part Opp
describes an opportunistic Synthesis process. Part Lev describes a leveraged Synthesis process. Each
of these parts presently consists of four sections with the fourth section, Advanced Topics, reserved
for future use.

"• Overview (OV)

"* Domain Engineering (DE)

Syn-3

OV.1. Inroduction

"* Application Engineering (AE)

"* Advanced Tbpics (AT)

An Overview section provides a brief description of the applicable Synthesis process as a whole.

A Domain Engineering section defines the activities you follow to standardize the process, work
products, and practices of Application Engineering for a business-area organization. The activities of
Domain Engineering are organized and presented hierarchically (see Eample OV.1-1). This hierarchy
reflects a grouping based on the knowledge and expertise needed to perform each activity, rather than
the order in which activities may be performed. A description of an aggregate activity is primarily a
summarization and roadmap to its subactivities. Each aggregate activity, as well as each of its subacti-
vities, is described in its own section. Each activity is described according to the outline shown in
Example OV.1-2.

An Application Engineering section defines a prototypical process, activities, and work products for
Application Engineering. A primary objective of Domain Engineering is to refine this definition to
satisfy the needs and objectives of supported projects. Each activity of Application Engineering is
described according to the outline shown in Example OV.1-2.

An Advanced Topics section is reserved for future use in presenting discussions of issues requiring
advanced understanding of Synthesis. The emphasis of such discussions will be on the refinement of
a Synthesis process and its guidebook description to meet particular needs.

Some supporting material follows Part Lev. The Appendix shows the completeness and maturity of
the material in Parts Opp and Lev. A List of Abbreviations and Acronyms, Glossary, and References
follow the Appendix.

1.5 USING THIS GUIDEBOOK

This version of the guidebook is intended as a reference for practicing managers and engineers. The
guidance can also be tailored to reflect an organization's standard and prevailing software develop-
ment methods. As a rule, detailed sections are meant to be sufficiently complete for full-scale use. For
smaller, more exploratory pilot projects, you may decide to expend less effort on activities related to
management, process definition, or opportunities for automation; however, no activities should be
skipped entirely.

The guidebook is also organized for use as a graduated introduction to Synthesis. Areading of Section
2 in this Part and Sections DE and AE (in either Part Opp or Part Lev as appropriate) is sufficient to
gain a basic understanding of the concepts of Synthesis. Example OV.1-1 serves as a guide to which
sections you should read for a deeper understanding of particular aspects of Domain Engineering.
You may choose to skip sections lower in the hierarchy when more detail is not of interest. This
hierarchy is valid for both Part Opp and Part Lev.

Activity descriptions in the Domain Engineering and Application Engineering sections are not
cookbook recipes on how to perform Synthesis. The Synthesis process family is a sophisticated ap-
proach to help solve a complex problem in partially understood domains where the experienced engi-
neer must use judgement and intuition to properly interpret Synthesis for his or her given situation.
The process diagrams found within this guidebook are intended to aid the reader's understanding of

Sin"4

Domain En~weSim (DEL)

Domain Ana.lyis (DE2.)[Domain Definition (DE.2.l.)

Donma Specification (DEZ)

Decion Model (DE.=±.)

Product Requirements (DE.2.2.2.)

Process Requirements (DE-23.)

Product Design (DE2a..4.)
Product Architecture ED2...4.1.'

I Conmonent Desiamn (DE.W.AZ I

4.3.

Domain Verification (DE.2.3.)

Domain Implementation (DE.3.)

Product Implementation (DE-31.)

Corpnn t tImementation (E.3.1.1.1

Generation plementation E3.1•.)

Process Support Development (DE.32")

Project Support (DE-4.)

Domain Validation (DE.4.1.)

Domain Delivery (DE.4.2.)I

Example OV.I-1. Hierarchy of Domain Engineering Activities

syns

OV.1. Itroductim

1. UiA$W SMI,* Describe when the activity is relevant and can be performed.

"* Objectives: Explain the objectives that you should achieve in the performance of this activity.

"* Required information. Describe baselined Synthesi, work products or other information upon
which some or all of the step of this activity depend.

"• Required knowledge and experience: Describe business-area, domain, and general software

knowledge and experience you need to effectively accomplish the required tasks of this activity.

2. Pmdue Dampdox. Describe the work product that results from completion of the activity.

"* Purpose: Describe what is accomplished by producing this work product.

"* Content: Describe the information content of this work product.

"* Form and structure: Describe the structure of the work product and the form in which its content
is to be presented.

"* Verification criteria: Describe how the consistency/completeness, correctness, and qualityof the
work product will be judged. Provide review questions and metrics that support that evaluation.

3. Proces Dusipdon. Describe a process that achieves the objectives of the activity.

"* Steps: Describe the actions, with associated inputs and results, that are required to accomplish
the objectives of the activity. Suggest heuristics for performing each step more effectively.

"• Risk management: Identify risks that may arise to prevent successful, timely completion of the
activity, and describe strategies for mitigating those risks. Use checkpoints, reviews, and metrics
to reveal flaws and misconceptions.

4. Interactidons With OdterActividi. Describe interactions that may occur with other activities as a result
of using a work product:

"* Describe feedback to the activities that provide required information to this activity.

"* Describe feedback from other activities concerning the adequacy to them of this activity's work
product.

Describe how those interactions stimulate product evolution. For each potential problem, describe:

"* Contingency- The nature of the problem that may be found in the use of a work product.

"* Source: The activity that provides/uses the work product of concern.

"* Response: The appropriate, alternative responses within this activity to the contingency.

5. Advanced Tb/ps (Reserved for future use only.) Provide guidance on complex aspects of this activity in
short, topical discussions. More expansive papers appear in the Advanced Topics section. Discusses tai-
loring to particular needs and the use of alternative, immature, but potentially more robust approaches.

Rumple OV.1-2. Activity Descition Outine

Syn-6

Synthesis. The process diagrams are not meant to be formal and complete process models. Instead,
these diagrams depict only those entitles and relationships important to the overall spirit of(jnteLs
Other aspects of Synthesis have been suppressed where they were considered to be irrelevnt so the
pN., of the supported text. Hence, a process diagram's purpose is to depict:

* Steps, including subactivities, that make up an activity

• The work product, or component of a work product, produced by each step

* How work products are used within the activity

* Which other activities are the primary users of the work product produced by the activity in
the process diagram

Conversely, the process diagrams do not show:

"* Control (entities that constrain/enable performance of the activity or its steps)

"* Mechanisms (roles that perform the steps of the activity and methods that support that
performance)

"* Feedback/interaction within or among activities

Iteration within an activity and between other Synthesis activities is determined by the management
method. Iteration is only indicated in the top-level process diagram (Figure OV.2-1 in the
Fundamentals Section) to suggest evolution of the domain as as whole.

Partial examples of work products are sometimes presented in the text to illustrate the form and
content of individual Synthesis work products. These examples contain fragments of Domain Engi-
neering work products drawn from the Traffic Light Control Software System (TLC) domain. A TLC
system controls and coordinates the operation of traffic lights at a given intersection.

1.6 CONVENTIONS AND NOTATION

This guidebook uses the following typographic conventions:

Serif font General presentation of information.

Capitalized Sernt •............. Names of Synthesis work products and activities.

Italicized serif font Mathematical expressions and publication titles.

Boldfaced serif font Section headings and emphasis.

Boidfaced italicized serwfont Run-in headings in bulleted lists and low-level titles in the
process sections of guidebooks.

Typewriter font Syntax of code.

S)............................ Alternative items (one or more).

Syn-7

OV.. Iutxodn.ioa

[] Optional items (zero or one).

.............................. Separator for a list of alternatives.

In this guidebook, figures that depict a process diagram use the following symbols:

......................... Activity or step named X.

......................... Product or work product named Y.

or A logical grouping of activities or steps.

Italicized serif font An activity outside the context of the particular figure.

- A relationship between activities or steps and the work
product(s) that are inputs to or results of those activities or
steps.

--- ÷.......................... A relationship between activities showing additional
interaction or information communicated between those
activities.

Work product examples in this guidebook use a metaprogramming notation to represent variability
in a product. Variability in a product means that a product will have different content, depending on
certain critical decisions. A metaprogramming notation allows you to describe how a product's con-
tent is determined by those decisions. A simple example of this is the use of a macro processor to defer
a decision about the size of a data structure. Instead of making the decision on the size of the structure
when the code is written (by embedding a constant), you can defer the decision by setting parameters
for (parameterizing) the code and supplying the required value at compile time. A metaprogramming
notation is an extension of this idea.

Boldfaced, bracketed text is used for metaprogramming notation in this guidebook:

<boldfaced-identifier> A deferred decision (e.g., <size>). Such identifiers may
be separated by dots to indicate elements of composite de-
cisions (e.g., <stacLtype> and <stacksize>). This iden-
tifier is replaced with the actual value of the decision
whenever an instance of a work product is created.

<if predicate then> bodyl [<else> body2] <endif>
A conditional inclusion. If the predicate evaluates to true,
then bodyl is included in the workproduct. Ifan els clause
is included and the predicate evaluates to false, then body2
is included in the work product. The predicate is informal
and defined in terms of decisions. Also referred to as a
conditional term.

<forall ident in list> body <endfor>An iterative (repeating) inclusion. The list is an identifier
for a decision that is multivalued. This construct includes

Syn-8

one copy of body in the work product for each value of the
decision. For each copy of body included, the

Iorresponding decision value replaces all occurrences of
identifier ident in that copy. Also referred to as an iterative
term.

A body is any text that may be a part of some work product. A body may also contain nested
metaprogramming constructs; if so, those constructs must be evaluated to determine the content of
the body.

Syn9

oy.1. lmaftucdos

Mh pape kWtedionlly Lft blank

Sjva4O

OV2. FUNDAMENTALS OF SYNTHESIS

Synthesis was conceived in recognition of past experience that suggested a need for a major
reconception of the software process (Campbell. Faulk, and Weiss 1990) to produce mprovements
in software productivity, product quality, Manageability, and customer resoiv. Davis,
Bersoff, and Comer (1968) present a comparison of several models of the software development life
cycle, which is a good framework for understanding this need. As the foundation for an initial under-
standing of Synthesis, this section describes the key principles underlying the Synthems approach, dis-
cusses the context in which Synthesis applies, and provides an overview of how Synthesis works, both
in general and at the stages of reuse program implementation for which example Synthesis processes
have been defined.

M.1 KEY PRINCIPLES

The Synthesis concept depends on four basic principles: program families, iterative processes,
specifications, and abstraction-based reuse. An understanding of these principles will help you to
understand Synthesis.

2..1 PROGRAm FAuM s

A program family is a set of programs that are sufficiently similar that it is worthwhile to understand
the common properties of the set before considering the special properties of individual instances.
The concept of program families was first proposed by Dijkstra (1972) and later elaborated by Parnas
(1976). Both papers argue that developers should construct software programs, not as unique arti-
facts, but as instances of a family of similar programs. A primary distinction of this view is in how the
creation of program versions are viewed: not as successive modifications to previous versions, but as
rederivations from a common abstraction. Each member of a family can be characterized entirely in
terms of how it differs from the common abstraction (i.e., the variations in the family). In Synthesis,
this concept of program families is generalized to a concept of product families that encompass all the
work products of software development.

2.1.2 ITmnvn Paoczsss

An iterative process is a process in which work products are considered complete only after repetition
of producing and using activities. Each iteration is short with goals set to make progress toward an end
product without unnecessary exposure to risk of failure if short-term goals are not met. In a nonitera-
tive process, an activity continues without interruption until its resulting work products are believed
complete. Only after such proclaimed completion is there any attempt to use those work products in
performing other activities. Although planning does not provide for rework of the results, feedback
from using activities inevitably requires replanning to allow for corrections; schedule and quality are

Syn-lI

OVZ Ptadaemesat syathwsi

usually degraded as a result. Since many errors in software work products are difficult to discover
without feedback from detailed use, an iterative process systematically produces better quality results
than a process that depends on producing correct work products without such repetition. A strong dis-
cipline of work product versioning and configuration management is crucial to a successful iterative
process (Humphrey 1989).

2.1.3 SP•CCAIWNS

A specification is a complete, precise description of the verifiable properties required of a work
product or set of work products (e.g., a complete software product). For a system, a specification can
serve as an abstract model that aids understanding and analysis. For expressive power, the notation
in which a specification is written usually assumes an understanding of specialized terminology and
constructs. Normally, a specification is either a description of requirements (i.e., the problem to be
solved) or a description of a design (i.e., the form and/or content of a solution). Additionally in Synthesis,
a specification may describe a product, or work product, (i.e., a problem and its solution) by resolving
the variations that characterize a family of such (work) products.

This concept of specifications derives from work in both requirements specification and automatic
programming. A key objective in both areas is the creation of a notation for describing a required sys-
tem without unduly constraining the details of the solution. The Naval Research Laboratory Software
Cost Reduction project developed an approach to precise, semi-formal specifications of software re-
quirements for avionics systems (Heninger et al. 1978). Winograd (1979) argues the need for a new
view of programming based on a descriptive (i.e., nonprescriptive) language. Balzer and Goldman
(1979) describe criteria for designing and judging the quality of a specification language.

2.1.4 ABsTAcnoN-BAsED RiUS=

The direct result of a software development project is a set of work products that describe and implement
a software solution to a customer-defined problem. Abstraction-based reuse (Campbell 1989) pro-
vides a means for representing a product family as a set of adaptable work products and for deriving
instances of each work product to produce a particular system product. An adaptable work product
concisely represents a family of similar work products that vary in well-defined ways. This supports
the localizing of potential changes so that the cost of modification or reuse is minimized for likely
changes.

The Ada generic package is a notation for representing a family of similar Ada code packages. Most
word processing packages provide a "form letter" capability that can be used to represent a family of
documents. Metaprogramming tools, such as TRF*, provide a flexible notation for representing fami-
lies of text-based work products. Each of these mechanisms provides a facility for producing work
products from a representation of a work product family.

2.2 CONTEXT FOR SYNTHESIS

In initiating a Synthesis practice, you should first consider the context in which you currently work.
This context is determined by three concerns: business objectives, system engineering practices, and
the objectives of a software engineering process. Tlhese concerns constrain the type of Synthesis pro-
cess that an organization can adopt. Within this context, you can create a capacity for rapid, systematic
delivery of similar, yet varied, systems.

*TRF isa metaupogramni tool developed by Template Software, Inc.

Sya-12

2.2.1 Busmw Omicriv

Synthesis is characterized by its focus on a family of systems for a business area rather than on
individual systems. This focus arises from evidence that, within a class of systems, an understanding
of similarities provides significant leverage for constructing a great variety of high-quality systems
cheaply and reliably.

Vith Synthesis, you conceive a domain not on an objective basis, but as a realization of the declared
business objectives of your specific organization. Your business objectives determine the types of
systems you build and who your customers are. A primary consideration in setting these objectives is
the expertise already available within your organization, particularly as a result of experience in build-
ing systems in the past. Other considerations are your expectations of future customer needs and
changing technology.

The environment most conducive to the effective use of Synthesis is one in which you give emphasis
to long-term business objectives. A positive climate for investment in the future, possibly at the cost
of deferred-but potentially greater--total return is a major advantage for realizing success with
Synthesis. It is important to consider these larger business concerns when addressing the needs of a
particular customer to avoid arbitrarily sacrificing longer-term interests to short-term pressures. On
the other hand, Synthesis lends itself to a management philosophy of incremental commitment, both
for early pay-back after a minimum initial investment and for accommodating the changing needs of
a single customer or the differing needs of many.

2.2.2 Sysrm ENGINENG PRAcriCES

Construction of modern, complex systems is a major undertaking that often requires the coordination
of many large groups of engineers with expertise in diverse fields. Some of these groups may be organi-
zations in separate companies, working jointly or as subcontractors, to deliver a required system. Engi-
neers follow a discipline of system engineering, in part to partition the problem and apply appropriate
expertise to solve each facet of the problem most effectively. This partitioning into subsystems often
follows the lines of major hardware components, but it may also serve the purpose of decomposing
the system into more manageable software assemblies.

Such partitioning is compatible with Synthesis, particularly when you are able to follow a systematic
approach that results in similar partitionings of similar systems. Each software partition (or subsys-
tem) then corresponds to a member of a family of similar subsystems (i.e., software systems) that can
be the responsibility of a cohesive business organization.

2.2.3 OBJ•Mr, s OF A SovrwAuRE ENGINEERING PROCiSs

The broad purposes of a software engineering process may be stated simply-

"* Analysis. To allow customers and developers to communicate effectively so that the problem
to be solved is understood.

"* Synthesis. Tb allow developers to produce a solution that corresponds precisely to the problem
as communicated.

"• Evaluation. lb allow developers and customers to validate the solution as having satisfied the
actual problem.

syn-13

OV.2. Rmduzuctals of Synthesis ________________

SManaqm . lb allow developers to organize and coordinate their work as a team for efficient
and effective performance of the process.

A conventional approach to software development achieves these purposes, but not efficiently.
Synthesis is motivated by the need for a systematic approach to tailoring the software engineering
process to meet the spicific needs of each organization. The key to achieving this end is to consider
long-term business needs when developing software. Looking first at the similarities among systems
that your organization builds provides a basis for you to become more productive by eliminating
redundant effort. Your efforts to build a particular software system can be focused more efficiently
on the aspects of that system that are distinctive. Synthesis prescribes the work that is necessary to
achieve this potential.

2.3 AN OVERVIEW OF SYNTHESIS

The purpose of a Synthesis process is to help you better utilize your expertise about a set of similar
problems and associated solutions pertinent to your business area. By viewing similar problems as a
family, common characteristics provide leverage in building any particular system. Similarities sup-
port a form of standardization that enables systematic adaptation to meet the specific needs of a par-
ticular customer. The results of standardized decision making by project engineers guide appropriate
adaptations of standardized, reusable work products.

The primary distinguishing features of a Synthesis process are:

"• Formalization of a domain as a family of systems that share many common features, but that
also vary in well-defined ways

"* System building reduced to resolution of requirements and engineering decisions,
representing the variations characteristic of a domain

"* Reuse of software artifacts through mechanical adaptation of components to satisfy
requirements and engineering decisions

"• Model-based analyses of described systems to help understand the implications of
system-building decisions and to evaluate alternatives

The degree to which a Synthesis process actually exhubits these features depends on the needs and abilities
of the adopting organization. As a general rule, these are goals that guide the formulation of a Synthesis
P;'-cess but they may be moderated to formulate a process that suits each organization's circumstances.

Regardless of your specific circumstances, a Synthesis process is one which is designed to support two
independent but interrelated objectives:

"* Tl produce and deliver software systems

"* To increase the productivity, product quality, manageability, and responsiveness of software
production and delivery

To address these separate concerns most effectively, a Synthesis process consists of two integrated
subprocesses: Application Engineering and Domain Engineering. Figure OV.2-1 shows how these
processes relate to each other.

Syn-14

I

• • I I I r-ts-s

Ap i suppo s &Ommi and

CusomerI
Requirements I

-c-u - - -r- -* ýAPpOaion Engirearing

Figure OV.2-1. A Syntbeaim to

Application Engineering (described further in Section AE of Parts Opp and Lev) is a standardized
process by which projects produce and deliver applications to customers. In terms of objectives, this
is the equivalent of conventional, "one-of-a-kind" software development. Both conventional and Syn-
thesis approaches start with customer requirements and produce a set of software work products that
are meant to satisfy those requirements. However, in a Synthesis approach, through a process of Do-
main Engineering (described further in Section DE ofParts Opp and Lev), you can institute a simpler,
more efficient process of software development and support it with standardized, reusable work
products.

Whether Application Engineering is a series of analysis, design, implementation, and testing activities
or creating and validating a model to generate a required application, it focuses on requirements and
"-ngineering decisions that are sufficient to describe a particular system, given a family of such systems.
Work products, including code and documentation, are mechanically derived from these decisions
using adaptable forms of those work products provided by Domain Engineering.

Domain Engineering supports Application Engineering in two ways. First, it creates a set of adaptable
work products that correspond to the work products that an application engineering project must pro-
duce. By identifying key decisions that are deferred until a particular system is needed and parameter-
izing a work product to show how it varies as a result of those decisions, Domain Engineering creates
work products that are adaptable to subsequent Application Engineering decisions. Second, Domain
Engineering describes a standard Application Engineering process that supports the decision making
and the work-product creation appropriate to projects in the business area. The process definition
institutes standard procedures and practices which Domain Engineering may augment with
appropriate automated support.

Domain Engineering and Application Engineering are iterative processes to attain quality products
and to support evolving needs. Application Engineering must accommodate uncertain and changing
customer requirements. Domain Engineering must accommodate changing markets, as well as the
evolving product and process needs of client application engineering projects.

ayn-1s

OV.2. Fundamenal of Synthesis

2.3.1 DEFINING A TAmLoRED PROCESS

To adopt a reuse process (such as a Synthesis process), you need to identify one that suits your
organization's needs and abilities for reuse. A key element of reuse adoption is to understand the na-
ture and extent of your organization's current needs and capacity for reuse and develop a plan for im-
provements in your reuse capability. The Consortium's Reuse Capability Model (RCM), described
in the ReuseAdoption Guidebook (Software Productivity Consortium 1992c), is a mechanism for this
purpose.

The RCM provides a framework for deriving a definition of a reuse process that matches your
organization's circumstances. Every Synthesis process embodies the same basic principles. However,
each can differ based on the degree to which the adopting organization chooses to commit to the vari-
ous success factors for improved reuse capability that the RCM defines. Success factors are grouped
into four categories, reflecting different perspectives on reuse that are important to an organization:

0 Management. Factors pointing to opportunities for improving management's role in facilitating
reuse.

* Application Development. Factors pointing to opportunities for improving the utilization of
reusable assets in the development of end-products.

* Asset Development. Factors pointing to opportunities for improving how assets are acquired or
developed for reuse.

* Process and Technology. Factors pointing to opportunities for improving the effectiveness of the
software development process and its use of appropriate technology.

As noted in describing the distinguishing features of a Synthesis process (at the start of Section 2.3),
the form of any specific process depends not just on those features but on the needs and abilities of
the adopting organization as well. An organization with unlimited abilities could adopt a Synthesis
process that exhibited those features clearly; a more limited organization would adopt a process that
did not require all of the abilities that these features require. A Synthesis process as a whole is affected
by management factors and process and technology factors of the RCM. The Application Engineering
process is further affected by application development factors. The Domain Engineering process is
further affected by asset development factors.

By considering the needs and abilities of your organization with respect to each of the RCM success
factors, you can design a process suited to that organization. As a guide to incrementally improving
your organization's reuse capability and the implementing process, the RCM includes an implementa-
tion model consisting of four stages through which an organization's reuse practice can evolve from
an initial, ad hoc reliance on the initiative of individual engineers:

" Opportunistic. Project plans allow for reuse; reusable assets are identified to support the
separate creation of individual work products; effort is focused on the immediate needs of
current projects.

"* Integrated. Reuse is an integrated element of the standard development process; assets are
developed to enable multiple use based on current needs.

Syn-16

" Leaugat Assets are developed for reuse considering both current and likely future needs
across a product line. Projects are viewed as agents of a business-area organization and work
to gain maximum leverage from and enhance the supported domain.

" Anticipaing. The potential for reuse is a primary consideration in how problems are viewed.
New business opportunities are sought and evaluated in terms of how well they exploit avail-
able reusable assets. Each project is initiated with an understanding of how its problem
corresponds to problems previously solved.

An organization may progress incrementally through these stages of implementation for lower risk
or it may commit directly to the adoption of a more advanced stage to get corresponding benefits sooner.

Part Opp of this guidebook describes a Synthesis process that is oriented to the opportunistic stage
of reuse implementation. Part Lev describes a Synthesis process that is oriented to the leveraged stage.
Other Synthesis processeses could be defined at the integrated or anticipating stage. Depending on
your organization's circumstances concerning reuse, you are likely to prefer one of these processes
over the others. Any such process definition, however, is best viewed as a prototype from which you
should derive a process that is tailored to your specific circumstances. The remainder of this section
characterizes the RCM and Synthesis processes in relation to each of the RCM's four implementation
stages.

The two Synthesis processes described in this guidebook are appropriate to organizations that are
targeting either the opportunistic or the leveraged stage of implementation. Each process has been
designed to reflect the assumptions and limitations appropriate to the targeted stage of instituting a
reuse program. For example, at the opportunistic stage, application engineers find and evaluate reus-
able components specifically for each work product. At the leveraged stage, reuse by application engi-
neers is indirect in terms of requirements-level variations and leads implicitly to integrated reuse
across the work products that constitute the product. This difference is traceable to success factors
identified respectively with these stages in the RCM. Sections 2.3.2 through 2.3.5 describe the success
factors that guide the design of a Synthesis process appropriate to a particular RCM stage of
implementation.

2.3.2 AN OpPomrums'nc SYNim is PROCESS

Your organization can adopt an opportunistic Synthesis process if it is targeting a new state of practice
similar to the following:

" Management. In planning an application engineering project, project management makes
allowance for reuse of existing work products. Project engineers are expected to reuse existing
work products or components appropriately without special support or coordination. Domain
Engineering is managed separately with the goal of increasing opportunities for reuse.

" Application Dewlopment. Application Engineering is work product oriented, as in conventional
practice. When creating an assigned work product, it is the engineer's responsibility to recog-
nize and exploit opportunities for reuse of existing relevant components, particularly those
provided by Domain Engineering.

"* Asset Deveopment. Domain Engineering analyzes previously developed work products to find
components to combine and/or refine in ways that increase opportunities for their reuse. The

syn-17

OV2. Fundamentals of Synthesis

known needs of active or impending application engineering projects guide this analysis and
implementation.

Process and Technolop. The Application Engineering process is not substantially changed to
accommodate reuse. A Domain Engineering process is an adaptation of that process. Existing
off-the-shelf technology, such as Ada generics and word processing packages, may be used to
create adaptable work products or components (i.e., families).

At the opportunistic stage of implementation, the Application Engineering process is organized and
managed in a conventional manner. The emphasis is still on the development of "one-of-a-kind" sys-
tems and the phased completion and review of corresponding deliverable work products. For example,
DOD-STD-2167A (Department of Defense 1988) has traditionally been interpreted as a "waterfall"
model, leading through a series of phases, such as software requirements analysis, preliminary design,
and detailed design. An opportunistic reuse process has the following implications for an organization:

" Reuse is a responsibility of individual engineers as they produce assigned work products.
Domain Engineering attempts to provide families of work products (as a whole or in parts)
that consolidate past experience in building similar systems in the domain. It is left to each
engineer to decide when there is sufficient opportunity for reuse.

" Domain engineering and application engineering projects are managed independently. The
immediate needs of projects to satisfy customer requirements override any longer term objec-
tives for the domain. When conflicts arise, Domain Engineering gives priority to supporting
immediate project needs. Whenever possible, those needs are satisfied in a way that comes
closest to matching long-term objectives.

An opportunistic reuse process is one in which reuse efforts are oriented entirely to supporting the
current needs of a business group's active (and imminent) application engineering projects. An oppor-
tunistic Synthesis process is directed toward increasing the opportunities for effective reuse without
causing significant changes in the application development process already familiar to managers and
engineers.

In opportunistic Synthesis, a project follows its normal process (similar to that of Figure OV.2-2, which
was derived following Evolutionary Spiral Process [ESP] guidance), changed only by the addition of
general, low-level guidelines for individual engineers to find and exploit relevant reusable assets. Do-
main Engineering (Figure OV.2-3) is an attempt to identify, organize, and improve assets from pre-
viously built systems (a key element of domain knowledge) so that those assets will be useful in satisfy-
ing engineers' current needs. Because Application Engineering, at this stage of reuse program
implementation, emphasizes the direct creation of documents and code, Domain Management fo-
cuses Domain Engineering efforts on opportunities for standardizing the form and content of particu-
lar work products. The domain engineer identifies sets of similar work products, defines each set's
common and varying features, and uses those features to represent the set as a family from which
application engineers can extract instances.

2.3.3 AN Imwum SmiNTEsis PRocEss

Your organization can adopt an integrated Synthesis process if it is targeting a new state of practice
similar to the following:

syn•1s

L*W~ - Sofune -Jam

LIII

Engineeroierng

Implemntatio

ProectSofwar Sofk tem&&eernnsg toa

Figure OV.-2. A Simple E sig¢ of an Application Engneeri Process for O Reuse

Management. Management recognizes that application engineering projects share a common
base of domain expertise. Domain and application project planning are integrated to avoid
duplicate effort and ensure timely domain support for critical application project needs. The

domain supports project needs and objectives as long as those needs and objectives fit with the
accepted domain scope and domain resources suffice.

Application Dedopmet. An Application Engineering process is work-product oriented but
application engineers expect to be able to produce a reasonable approximation of the deliver-
able product from an Application Model and Adaptable Components and create the final
product without major structural rework. A unified core Application Model, with extensions
specific to each work product, drives production of all required work products.

Syn-19

II

- -isi --

Damain
- -----

sourcek -110 vaiaitytowihtraceablit is ai=ntaied Bot th&ppiato Egnern
D"of an.Tipplication t w Eng g esa

"iAssegrt edpwith Eerplyi requinrupoteodtv applicationegneigwr productis ardepresi enedbasca

sonureed ofvriailt thos whijcts traeblt isomaintaninedrn. Bt h Application Engineeringreiso

PolmdutoDomain Engineering arhoogx ep wtracedpii wandvuedrs. tvaeehncmns

At the integrated stage of implementation, the advantages o! leveraged effort compete with the
immediate concerns of individual projects. solution approaches that can build on existing assets are
Preferred over unique, single-use solutions. The long-term, needs of the business organization influ-
ence decisions on the ne-ar-termn use of resources. Although application projects may still have to
perform one-of-a-kind effort, it is easier to distinguish essential from arbitrary product variations.

Application Engineering and Domain Engineering processes typcal of an integrated Synthesis
practice have not yet been defined.

2.3.4 A L~vmgaGED SYNTHEIS PaOC•Ss

Your organization can adopt a leveraged Synthesis process if it is targeting a new state of practice
similar to the following.

syn-2o

OV±A Pmdinual et •Uhi

* Maenuwi Management views a business organization as a vehide for building systems in
a chosen problem domain. Management of the domain and its client application engineering
projects is unified. Projects are initiated in a particular organization when a problem fits prop-
erly within its domain. Domain Engineering objectives consider project objectives but are
motivated predominantly by the need to achieve strategic business objectives.

" Applicatdon Dvelopnue. Application engineers specify a problem and its solution in the form
of an Application Model. Changes in the problem or changes in its understanding or alterna-
tive solutions lead to a modified Application Model. Deliverable work products are generated
directly from an Application Model and Adaptable Components. Normally, Domain Engi-
neering handles discrepancies in a product; occasionally (e.g., when project constraints con-
flict with domain objectives), Application Engineering directly modifies generated work
products.

" Asset Dewdopmem. Development focuses on supporting a unified product family that
comprises families of deliverable and supporting work products. Domain Engineering gives
application engineering projects an ability to derive a product entirely from a model
representing requirements and engineering decisions and reusable work product families.

" Process and Technology. Domain Engineering creates a standard, reuse-oriented Application
Engineering process for projects in the domain. Key aspects of that process are supported by
specially built automation.

At the leveraged stage of implementation, the Application Engineering process is organized and
managed in a standardized way based on the nature of the business as determined by Domain Engi-
neering. The emphasis is on producing and delivering systems that meet the needs of customers; how-
ever, only systems that fit the strategic charter of the organization are initiated. This process has the
following implications for an organization:

" The core expertise of the business is focused on effective domain engineering. Application
engineering projects are agents of the domain and leverage the core expertise appropriately.
Management of the domain is unified to achieve a proper balance between strategic business
objectives and current project needs.

" Most of the Application Engineering process focuses on capturing and refining an understanding
of a customer's requirements in an Application Model and comparing standard alternative
solutions that satisfy the model. Work product creation is reuse-based and largely automated,
as is support for much of the rest of the process.

A leveraged Synthesis process is one in which strategic business needs, tempered by past project
experience and current project needs, define a domain that motivates reuse as a vehicle for achieving
long-term organizational objectives. A separate application engineering project is instituted to serve
each customer having a problem judged to be within the domain.

In a leveraged Synthesis process, projects follow a standardized, reuse-driven process (e.g., like the
one shown in Figure OV.2-4) that results from an analysis by Domain Engineering of how projects can
operate most effectively doing family-oriented reuse (Figure OV.2-5). At the leveraged stage of imple-
mentation, Domain Management focuses Domain Engineering efforts on the adaptable standardiza-
tion of the process and products of Application Engineering to improve the life-cycle productivity of

Sy- 21

OVM ftrdauntals of Syatbes

the total software development enterprise. The deliverable work products of each Application
Engineering project are mechanically derived from an Application Model and domain-specific adapt-
able specifications, designs, and implementations, resulting in a tailored, integrated software product.
At this stage, the concept of a reuse library is subsumed into a broader framework of process support.

Customa
Requrements

a a

a Modeiln
o a

a, I
a o

a a
a a

a S

a a
o a

a a

a a
a U

a I

Deivr anaa a

a a
t a

Figure OV.24. A Prototypical Application Engineerig Process for Leveraged Reuse

2.3.5 AN ,A.mncEP,•2NG SYTmi PROCESS

Your organization can adopt an anticipating Synthesis process if it is targeting a new state of practice

similar to the following:

" Management. Domain and application projects are managed as vehicles to serving a perceived
customer market. Management's objectives try to anticipate and stimulate customer expecta-
tions to match the organization's capabilities and assets. Application projects are initiated be-
cause of a recognition that they fit with and can leverage the organization's expertise. Domain
and application project resouces are strategically coordinated to seek optimum value from the
investment.

"FApplication DewAopment. The Application Product, including deliverable versions of all work
products, are derived entirely from an prjcts Model leveraged with domain assets. The
process is highly iterative, customer-involved, and systematic, including the use of predictive
models of system properties that aid the engineer in rapidly delivering an acceptable product.

Syn-22

atsm abeie

Doai Doain

Plan

-, FaJ3

Doai Domai

DDomain
(Aplcaio Eniern

I - - - - - - - - - - - - --- I - - - - - - - -

referred to ~ ~Domain Egneigfripoeet

An*yood Doana~e~ rvdsast n atmto ufcett ul n

deie copeepout htmthtenesofApiainEgneigpoet.Pe

viul nicvrdnesaerpdyitrdcdwti lxbeadcnitn famwr

of exsigcpblte.Efrst dntf e ed n mrvoeitn

nessiu at cotnigeouino h oan

Poan akntV BohteDmianiern WApiainF~aq rcse

ar ytmtclyaatdt utteevligneso h raht n t marktEc

a a -2

OVI. Pmdmma" d *""k

of the processes is optimally automated based on an analysis of cost and benefit. The processes
and supporting technologies are integrated for rapid response to changing crmsces.

At the anticipating stage of implementation, the emphasis is on anticipating and creating a market for
an organization's product line. The focus of investment is on predicting future market needs and creat-
ing assets that will serve those needs. Application projects are sought that not only exploit existing ca-
pabilities but also provide opportunities for enhancing those capabilities. Application projects are
seen as a means to apply the knowledge and expertise embodied in a domain to problems that can
benefit from this knowledge and expertise.

Application Engineering and Domain Engineering processes typical of an anticipating Synthesis
practice have not yet been defined.

Syn-24

PART OPP: OPPORTUNISTIC SYNTHESIS

ThpqvhmdmwI4kftbmak

OV. OVERVIEW OF AN OPPORTUNISTIC
SYNTHESIS PROCESS

This part of the guidebook presents an opportunistic Synthesis process. This is a process suitable for
an organization that has achieved the goals associated with the opportunistic stage of reuse capability,
as defined by the RCM. lb help you understand whether an opportunistic process suits your organiza-
tion, this section discusses the assumptions that underlie the process and the nature of software
development when using the process.

1. UNDERLYING ASSUMPTIONS

The RCM defines four stages of reuse capability implementation and characterizes each stage by a
set of goals. The opportunistic Synthesis process described in this part of the guidebook was designed
to fit the goals associated with the opportunistic stage as described in the Fundamentals section of the
overview to this guidebook (Section OV.2). To adopt this process, an organization will have targeted
those goals as a minimum, rather than the more ambitious goals associated with other stages. Your
organization may choose to adopt the opportunistic process even if it has the potential to attain goals
associated with more advanced stages of reuse capability implementation. However, this process does
not depend upon nor require your organization to attain any of the more ambitious goals associated
with more advanced stages.

The goals associated with the opportunistic stage introduce requirements for a process to be used by
organizations targeting that stage. The Synthesis process described in this part of the guidebook is one
example of a process that an organization targeting the opportunistic stage could adopt. It differs from
other such processes because it reflects assumptions about an organization's circumstances that ex-
tend those implied by the RCM goals for the opportunistic stage. Section 2.3 in Part Syn of the guide-
book describes characteristics common to all Synthesis processes, particularly that the process com-
prises iteratively cooperating Domain Engineering and Application Engineering subprocesses.
Additional assumptions that distinguish the opportunistic Synthesis process are as follows:

Managers and engineers are workb in afamiiar domain. Application engineers are building a
product similar to one they have built before, and domain engineers are analyzing products
of a sort with which they have experience. The "theory" underlying the product is familiar to
them, at least intuitively-, based on previous experiences, they have some idea of appropriate
design structures (e.g., process communication models) and testing strategies. Also, they
know the types of work products that they will produce as part of their normal Application
Engineering routine (requirements documents, design documents, etc.); the form and struc-
ture of each work product (e.g., DOD-SID-2167A); and the process by which projects produce work

owl

OV. OveVew oa OPPOrtunwii SkyambIss ros

In other words, domain and application engineers understand existing problems and solutions
in the domain. Generally speaking, domain engineers do not have to create new ways to de-
scribe problems and solutions. They only need to document them, codifying their intuitions,
common sense, and day-to-day practices. They can assume application engineers understand
problems similarly and know how to make appropriate use of existing solutions.

"* The orizamaon has dewloped and has accn to swmiar sy.w. In the near-term, the organization
expects to develop systems similar to those that it has built in the past. Knowledge, experience,
and existing work products are, therefore, relevant to current and planned systems. Domain
engineers have access to application engineering work products of the types they plan to make
available for reuse. These work products include code, documentation, test plans, and
anything else that might have reuse value.

This assumption improves the viability of a domain, independent of reuse stage. Domain
engineers can rely entirely on their knowledge and experience, but detailed analyses of pre-
viously-developed work products can provide increased insight and ground the result in real-
ity. Existing work products provide raw material from which a reuse library can be derived,
with more confidence and less effort than original development provides.

" The role of Domain Engbin is to increwe opponunities for ruw during Application EiginWi.
This assumption has two meanings. First, domain engineers obtain, codify, and organize do-
main knowledge and existing work products. Domain engineers focus on providing
accurately-documented, existing work products to application engineers.

Second, domain engineers sometimes reengineer existing work products to satisfy new needs.
Strictly speaking, reengineering does not occur in a pure opportunistic process, where domain
engineers only take advantage of existing opportunities-i.e., existing work products. The
pure opportunistic process limits reuse to needs of past application engineering projects. This
approach is undesirable if domain engineers perceive greater opportunity by satisfying new
needs, they should provide a solution to those needs.

Application engineer want to use afamiliar process. Application engineers are already familiar
with the types of work products that their customers require for the domain, and with the pro-
cess for producing them. They want to use this process on the current project. Application en-
gineers, therefore, have expectations about the types of work products they will produce and
the order in which these work products are created. Reuse must not affect either the form or
the order. In other words, it must not influence the overall Application Engineering process.

Reuse focuses on resolving variations among mmiben of a work productfanily. This means that
sufficient flexibility in reuse depends on accommodating variations. Domain engineers stan-
dardize a work product family by identifying commonalities and variabilities that characterize
its members. Commonalities provide the basis for potential leverage, in that they express gen-
eral Application Engineering needs. Variations correspond to decisions that application
engineers need to make to express their needs precisely.

Domain Engineering supports only one application engineering project at a time. Domain engineers
scope a domain, and focus their efforts on creating reusable products, based on the needs of
a single application engineering project. Domain engineers support a current project that is
similar to previous projects and a predictor of future projects. The organization expects to
reuse the resulting assets in both the current and future projects.

Opp-2

This assumption provides domain engineers with a strong focus. Their examination of eziting
material and the goals they set for reuse are tied to one project, not to an entire organization
or to anticipated projects (a consideration at later stages of reuse capability). Also, this as-
sumption helps justify having the current project directly fund Domain Engineering work in
the early stages of reuse program implementation.

2. SOFIWARE DEVELOPMENT WITH AN OPPORTUNISTIC SYNTHESIS PROCESS

This section is a general overview of the opportunistic Synthesis process presented in this part of the
guidebook. It gives an overall feel for software development and management as practiced by an orga-
nization with opportunistic reuse capabilities, without elaborating every activity or every possible vari-
ation or interpretation of the process. As Figure OV.2-1 in Part Syn depicts, Domain Engineering and
Application Engineering activities, and the interactions between them, are defining aspects of any
Synthesis process. This section describes this opportunistic Synthesis process from three perspectives:

"The organization controlling Application Engineering (application software development to
satisfy a particular customer) and Domain Engineering (the effort invested in reuse) within a domain

" An individual application engineering project

"* The domain engineering project for a domain

This section concludes with a brief scenario of how Domain Engineering and an Application
Engineering project interact.

2.1. ORGAmZunONAL PERSPEwnwE

In opportunistic reuse, an organization's strategy is to leverage reusable assets as best it can with
minimal investment. Reuse at the opportunistic stage is not a key business-area strategy but rather
an opportunity exploited on a project-by-project basis. The business organization may allocate limited
initial funding, but in general would like to operate in a "pay-as-you-go" mode: each increment of in-
vestment in reuse, whether from organization or project funds, should result in a payoff for a specific
project (against which direct costs are charged and justified).

This business/management orientation motivates how Synthesis is interpreted for the opportunistic
context. As always with Synthesis, Domain Engineering exists to support Application Engineering.
However, in the opportunistic process, Domain Engineering focuses on current needs. The current
needs are defined by the application engineering project targeted for support by Domain Engineering.
However, the organization can expect Domain Engineering products to be useful on other application
engineering projects that are building applications in the same domain.

The first time an organization practices Synthesis, it may have to expend preliminary effort, beyond
current project needs, to get up to speed. Once a domain exists, there are reusable assets that future
projects can use as well. Each time an organization begins a new project, it considers focusing Domain
Engineering on that project. The domain engineering project revises existing domain work products
to reflect any differing needs of this new application engineering project. As the project proceeds, Do-
main Engineering adds and revises reusable assets to correspond to the current concept of the
commonalities and variabilities among systems in the domain and their associated work products.

Opp-3

OV. Overview of an Opportunistic Synthesk Ptoes

2.2. APPUCATION ENGINEERING PERSPEcriVE

At the opportunistic stage of reuse program implementation, the current project shares a framework
of process and work products with past projects. This framework links the reuse program's success to
the individual application engineer's ability to take advantage of reuse opportunities as he builds each
work product.

Application Engineering follows its organization's normal process, probably similar to the waterfall-like
process depicted in Figure OV-1. However, whenever Domain Engineering has provided reusable as-
sets associated with a particular type of work product, the application engineer has the ability (and
responsibility) to evaluate and exploit opportunities for reuse in creating that work product. Such re-
use can leverage existing work products of the same type, either in their structure, in the content of
portions, or in their entirety. In any case, the application engineer will likely have to tailor the resulting
draft work product for it to meet fully the precise needs of the current project. Whenever the engineer
is unable to create the entire work product through reuse, he still has the ability to work conventionally
to create the appropriate final work product.

2.3. DOMAIN ENGINEERING PERSPECImVE

In opportunistic reuse, the goal of Domain Engineering is to support reuse by an application engineering
project in a way that minimizes an application engineer's effort to discover whether reuse is feasible.
Domain Engineering adopts a narrow focus on each work product that application engineers have to
create. By analyzing the commonalities and variabilities of a work product type that has been pro-
duced by previous projects, domain engineers can focus the attention of the Application Engineering
to those work products and aspects of each that are most likely to yield effective reuse.

Tl have sufficient context, Domain Engineering works on supporting reuse for a work product just
prior to the planned Application Engineering activity for producing it. Domain Engineering uses work
products and other information from preceding phases of Application Engineering to determine
which reusable assets are most likely to fulfill the needs of the next phase. Ideally, the past is a perfect
predictor of the future, and assets of past projects fit perfectly with the current project. In practice,
application engineers will need assistance in making the correct match and adjustments between need
and available reusable assets.

Where the predicted needs for the current project only partly match existing domain assets, domain
management must decide whether original work is justified. When the current project has a need that
is different from previous projects, the need may be unique to that project or it may indicate an impor-
tant new need of all future projects. As a rule, until a need can be dearly characterized as a common
need, it remains outside the scope of further Domain Engineering consideration. In opportunistic re-
use, there must be an expectation of future recurring uses to justify a reuse-oriented investment. Ap-
plication engineers must handle whatever custom development is necessary to address any needs per-
ceived as unique to their project. However, when a similar need arises for a subsequent project, there
is then a foundation of existing application work products from which Domain Engineering can create
reusable assets and enhance the domain.

Even when common needs clearly exist, Domain Engineering is not obligated to provide reusable
assets for everywork product of Application Engineering. The domain's resources must be intelligent-
ly allocated to work products that offer the most potential benefit from reuse. Domain engineers work
with particular work products based on the following criteria:

opp4

O'L OvMiidsaaOf!!q!Ld V~. these

Customier zRaquirbmerit D, = Icnuingmenng

* -~ Definition

* Application Enginneering Domnain
* ~Definitiona

DeinSystem Reqý ts -r"

* a Rcquiremeznta
Deeo Syte Arit a-

Work Pro duct Faiissfwr
Devevlopen Systmuicriectrents

Document Family

--------------- e

System Fami Faie l
aReusable Devlopent

I r

a Create Components a

-- - - - - - -a- -

Application product

a rind Vaidation

a
aprto n

_ Maneac Figure OV-2 depicts a blowup of
----------- ------ the activities inside this Family

* Development box.

to Customer

Figure OV-1. Example Application Engineering and Domain Engineering Interaction

Opp5

OV. Omvevw of an Opportunktir 3atbuak hroc=

DeciaaiMode __c~

mawa

PNodud DeS' Djp
a I

,a... -.. as::::::::::
M I aI

a=M a

a•u V2 lwp faWr rdc aail almn Aciiyar

a h ott eoe ad aes nastwla mseulteC~ o adrsigtend a

custom deelopment

aigure ao aBlwuc aof aa (ire cV-1

" Domain Engineering can disctsse ne wrkaprSoduts ai aeious
aoaaiaertha withe somes m in Figut thm Dint aenreering form).

Figues o- shows pouthe relatiremntshi betweenths, workg prductumevelomen apoputroc soFigures units

Oppp

an*V2 n Domain Engineering can extrctuthed inreedednwork poducths fromipeviousaplctin

Cosie Domai Enginheeringl prcasn proideutheneeDworki proucsgitheing thepproets shedule ofotre

ande of andk Dromains renginemerngts discussednts remaigndouernfths, guidebooptrotwruis

2.P4. NEhlizSn~

BusmesObjectves

-. -a

Doai Anlyi

Domain Domain
Manageen Deiito

Plan

S Spcfcto

a Domain
DomaDomain

Domai Do ai
Verificatio

aroect
a aod

a - - - - - - - - - - - - - - 4a-- - - - - -

ah Prcsaaaeet dt somi *

OV1 anSh eiinMdl rdc eurmns

an Prdc einaais(hw n imO)1AAfmEbvn

ar ato h oanSeiiato Aciiy

2 h rdc mlmnato an rcs upr

aciite (sonia~ V2 aeatfb~m

a __________________________________

a epoetSupr dv asdMheerpsut

a DoanDfntoageeahecito f h oansoe n Process. Requirements, Aaivt (sowen-iur

acipind Poducth Designectidvpties(shn ind Fwgre podutV.2)iainEnierng h oai ei

ac ietifiies exstoning Fsgsrem thare part on the domain adaalbet oanEgneiga ore

Impleentaton Acivity

~ Th ProectSupprt ctivty a shwn hre epreent

OV. Overview of an Opportunistic Synthesis Pocess

of raw material. Normally, a new project continues a line of business that the organization has been
pursuing; this presumption is the basis for intuitive expectations for reuse opportunities.

As the project progresses through the Application Engineering process producing work products, the
application engineers look for opportunities to reuse existing work products, in whole or in part. In
order to make reuse attempts for particular work products more effective, Domain Engineering at-
tempts to organize, improve, combine, and document existing work products of that type. In this exam-
ple, Domain Engineering has determined that software requirements documents, software design
documents, and software components offer the best opportunities for reuse by the current project. As
a result, domain engineers focus their efforts on enhancing the reusability of those work products and
helping application engineers recognize and exploit them as opportunities arise.

Application Engineering benefits from opportunistic Synthesis because Domain Engineeiing identifies
and provides potentially reusable existing assets based on perceived needs of the current projeci. This
focus makes the likelihood of reuse greater than if Domain Engineering populated the library with
arbitrary components. Because the organization expects more business in the domain, it anticipates
that this effort will benefit future projects as well.

op" 8

DE. DOMAIN ENGINEERING OVERVIEW

1. GETTING STARTED

Domain Engineering is an activity of a Synthesis process that creates and supports work products
which support the Application Engineering process in a business area, particularly with respect to the
needs of a specific project (hereafter termed the targeted project). Domain Engineering is a compre-
hensive iterative life-cycle process with management, analysis, implementation, and support activities
for a product family. A product family is represented by a collection of work product families.

1.1 fOnr

The objectives of Domain Engineering are to:

"* Organize and direct resources to facilitate opportunities for reuse of existing application
engineering work products by the targeted project within an organization

"• Define the nature, extent, and substance of a set ofwork product families that complements those
opportunities for reuse

1.2 RE~unm lMkWAo• ON

Domain Engineering requirev the following information:

"* Domain knowledge (including existing products)

"* Business objectives

1.3 REQunm KNowLzWxz mD EX•,YuEcE

Domain Engineering requires domain and software knowledge and experience in:

"* The needs that motivate systems in the domain (i.e., application engineering work products)
and associated work products

"* The environments in which the systems in the domain will operate

"• How the systems in the domain are built

"* How application engineering projects in the domain are managed

oM9

DE. Domain En~inering OvrVewW

2. PRODUCT DESCRIPTION

Domain Engineering creates four work products: Domain Plan, Domain Definition, Domain
Specification, and Domain Implementation. Domain engineers evolve these products in subsequent
iterations of Domain Engineering to support future projects, consistent with organizational business
objectives.

2.1 DOMAIN PLAN

Purpose A Domain Plan (see Section DE.1) establishes the scope of domain
development and defines the tasks and resource allocations for domain
development increments.

Vbeadon The expected needs of planned projects in the business area are sufficient to
Critia compensate for projected costs and risks of domain development.

2.2 DoMAIN DEFINITION

Purpose A Domain Definition (see Section DE.2.1) defines the informal scope and
orientation that characterize a viable domain.

Vweaion The Domain Definition captures sufficient information to allow domain
Criteria engineers to describe any existing or potential system in the domain (in

particular, the system being built by the targeted project).

2.3 DOMAIN SPECMCATION

Pwpose A Domain Specification (see Section DE.2.2) defines a set of work product
families that provides increased opportunities for reuse to the targeted project
within its Application Engineering process.

Verifcation The Domain Specification precisely expresses the domain as captured in the
Citeria Domain Definition.

2.4 DOMAIN IMPLEMENTAION

Prpose A Domain Implementation (see Section DE.3) is an implementation (with
documentation and automated support) of a set of work product families, as
prescribed by the Domain Specification.

VMeaion The Domain Implementation provides each work product family described in
Citeria the Domain Specification.

3. PROCESS DESCRIPTION

Domain Engineering is an interaction among the four steps shown in Figure DE-1.

3.1 PRocEDuRE

Follow these steps for the Domain Engineering Activity.

Opp-1o

ba@mu Objei

.. * •.-I

DQ=Wa

Dei

�, D•mD.ina 1

Dmosii

Domain

F
aWa

D .- oi

Step: Domain M~anagement Activity

Ado Plan, monitor, and control the use of domain resources to provide reusable
work product families for a domain of interest to projects within a
business-area organization.

SDomain Plan

Hewwk Define near-terrm objectives that support the application engineering project
targeted by Domain Engineering- Organize and manage domain resources to
achieve those objectives.

Step: Domain Analysis Activity

Action Scope and specify a domain based on an analysis of needs of a targeted project
in an organization.

opp-11

DL Damde Eaomia,,•o

Imp Domain Plan

PAM* 0 Domain Definition

* Domain Specification

Howtics • Create an informal definition of the domain. Characterize its scope, the
aspects common to all systems in the domain, and the features that vary
across systems in the domain. Also characterize the work products com-
monly produced as part of Application Engineering, Explicitly state what
is not part of the domain. Provide a glossay of common terms. Assess the
viability of supporting each of the aspects you have characterized.

0 Precisely specify problems within the scope of the domain. Describe both
common problems and variations in those problems. Specify solutions to
the problems in the domain so that the solutions vary in the same way as
the problems. Identify important work products (i.e., those susceptible to
reuse). Specify the Application Engineering process commonly used in the
domain, showing when a given work product is developed. Determine the
work products for which (reusable) work product families will be
developed.

Step: Domain Implementation Activity

Action Implement the domain as defined by the Domain Specification.

Input * Domain Definition

"* Domain Specification

"* Domain Plan

Rasult Domain Implementation

Heimwics • Implement the work product families and process described in the Domain
Specification. Incorporate variations into the implementation of the
solutions. Structure the implementation of the solutions as a set of work
product families, each of which supports reuse for a particular work
product that application engineers might want to develop.

• Describe conventions, procedures, and standards for using these work
products. Document how application engineers can perform reuse based
on these descriptions. If time and resources permit, automate routine
time-consuming tasks.

Step: Project Support Activity

Action Support a project in performing the Application Engineering process.

Input Domain Implementation

Opp-12

, M_-- -_=snob -_/5•w

SDeliver, install and su t the Domain Implemeation ix ae by the
targeted project.

32 RMa MAI(AGUIWT

R 'MThe products of Domain Engizing will not lead to standardfizd domain
reuse practices on projects.

hW&a tnThe Domain Engineering hmstment will not produce projected benefits for
the targeted project or the business organization.

M •ar" Staff the Domain Engmeering work with experienced project managers
and engineers. Ensure that all work is actively reviewed by other experi-
enced managers and engineers and is adequately reviewed by all partid-
pants of application engineering projects. Include engineers familiar with
the needs of the targeted project.

* Evaluate the effectiveness of the Domain Engineering process and work
products relative to past project experiences. Ensure that the characters-
tics of that experience or the resulting systems are not in conflict with the
process and work products.

4. INTERACTIONS WITH OTHER ACTIVITIES

4.1 FE•EcAK To INmFmmON SoURCEs

None

4.2 FEmDBAcK FROM PRODUCr CONSUMRS

M The work product families are inadequate to support the needs of the targeted

project.

SomW Application Engineering

Raspos * Determine that expressed needs are outside of or otherwise conflict with
chosen domain objectives or cannot be viably satisfied given available
domain resources.

* Evolve the domain to satisfy current needs.

oppp4)

Mh& pagr intmdonally £kft bwLw

0pp144

DE.I. DOMAIN MANAGEMENT ACTIVITY

1. GETTING STARTED

Domain Management is an activity of Domain Engineering for managing business-area resources to
increase opportunities for cost-effective reuse of previously developed assets. Domain Management
plans, assigns resources, and directs Domain Engineering to serve the needs of a targeted application
engineering project.

Domain Engineering develops and evolves a domain through a series of increments. The Domain Plan
lays out both a master plan for evolution through projected increments (evolution plan) and, as each
increment is initiated, a detailed plan for each increment (increment plan). The evolution plan identi-
ties the systems that provide the basis for a domain (i.e., the source of raw material) and the applica-
tion engineering projects that are targeted for support. An increment plan determines how domain
engineering resources are applied to create reusable assets that can be exploited effectively in the
targeted application engineering project.

Domain Management monitors domain engineering performance to assess progress, ensure proper
adherence to plans, and guide needed revisions to the evolution and increment plans based on feed-
back from Application Engineering use of domain assets. A key concern of Domain Management is
coordinating Domain Engineering activities to support the needs and priorities of targeted applica-
tion engineering projects in satisfying customers' needs. Domain Management attempts to ensure ef-
fective use of allocated resources by coordinating its planning to match the needs of a targeted
application engineering project.

1.1 OBJ~cvES

The objective of Domain Management is to manage business-area resources to create cost-effective
reuse opportunities for a targeted application engineering project. Management establishes domain
objectives for the organization to guide the creation and revision of an increment plan for a series of
domain increments. An increment begins when a project is first targeted for support or when the needs
or status of the targeted project changes significantly.

For each increment of development, Domain Management develops a plan to deliver capabilities that
match the needs of targeted application engineering projects. Application engineering projects are
planned independently, but with an awareness of domain capabilities, to meet particular customer
needs.

1.2 REQUum INFOmAON

The Domain Management Activity requires the following information:

Oi-s

0 Business objectives, specifically the priorities of executive management for business area

development

* Domain Definition: Domain Status

1.3 RsQumJ KNowLEDGE AND ExE N

The Domain Management Activity requires domain and business-area knowledge and experience in:

"* The nature of projects in the business area

"* All aspects of strategic business-area management in the organization,

"* All aspects of application project management in the organization

2. PRODUCT DESCRIPTION

Name Domain Plan

Pwpose Define near-term objectives for a business area and organize and manage
domain resources to achieve those objectives.

Contn A Domain Plan consists of three parts:

"* Domain Evohlion Plan The Domain Evolution Plan establishes a
purpose and scope for near-term domain development.

" Pracices and Procedures. Practices and Procedures prescribe the
preferred practices and procedures that are to guide the proper
performance of domain development.

" Domain Incremwe Plan. A Domain Increment Plan specifies how to
organize and manage Domain Engineering resources to facilitate re-
use of previously developed assets by the targeted application
engineering project.

Both the Domain Evolution Plan and the Domain Increment Plans include the
following:

" Ris*Analpir. Identification of uncertainties in meeting allocated business
(for the Domain Evolution Plan) or domain (for a Domain Increment
Plan) objectives, assessment of the risks of failure, and identification of
mitigation strategies.

" Objectis. The scope and focus of support to be provided for the
domain or the increment of domain development, reflecting the needs
and priorities of targeted application engineering projects. Scope is in-
dicated by an identification of previously built systems upon which the
domain will be based; focus is indicated by the choice of targeted

Opp-16

project. Objectives are divided into risk objectives and product objec-
tives. Risk objectives attempt to mitigate risks identified in the risk
analysis. Product objectives establish goals and success criteria for
creating specific work products.

"* Schmwd The allocation of domain resources to deveouent incements
that satisfy domain objectives or to activities within an increment that sat-
isf increment objectives. The schedule establishes specific milestones
and success criteria for domain development increments or for the
activities of a development increment.

"* Issues. A description of issues that arise in performing the plan.

Frmn and lb the extent possible, the form of a Domain Evolution Plan should be the
SOWu= form your organization currently uses: the Domain Evolution Plan should

follow the form used for business planning; Practices and Procedures should
follow the form used for standardizing the practices of application projects;
and the Domain Increment Plans shoulk' follow the form used for application
project planning.

Verf.ation The verification criteria for the Domain Evolution Plan are:
Critria

"The expected needs (i.e., opportunities for reuse) of planned projects in
the business area are sufficient to compensate for projected costs of
domain development.

"* The Domain Evolution Plan gives the domain a viable near-term purpose
that is consistent with the needs of targeted projects.

"* Each Domain Increment Plan institutes a plan that seems likely to satisfy
the expected needs of the targeted project.

3. PROCESS DESCRIPTION

The Domain Management Activity consists of three steps as shown in Figure DE.l-1.

The Domain Evolution step begins upon creation of a domain and continues until the domain is no
longer judged to be viable in serving the needs of an application project within the business area. The
Domain Evolution Plan prescribes a series of Domain Development increments. Each increment is
planned and performed iteratively until its objectives in the Domain Evolution Plan are met. The Do-
main Evolution Plan is subject to revision after the completion of each increment to reflect progress
or changing needs of targeted application engineering projects and their customers. The step to Insti-
tute Practices and Procedures occurs before the initiation of the first increment of Domain Develop-
ment and is revisited as needed to update the Practices and Procedures to enmure an effective and
efficient approach to Domain Engineering.

The plan is iterated whenever a targeted project is initiated, terminated, or has a significant change
in its own plan. Plan iteration requires you to reconsider the scope and focus of support you are
providing to projects.

Opp17

Domain Defiiton
Domain Stabs

Ob*:ts

* '
Domain

* '
* a

It

antb arci n

* an

to
Domain Analpsit, Domain Implemoutation and Project Suppoil

Figure DFl--. Domain Management Procem

3.1 PtoCEDUR

Follow these steps for the Domain Management Activity.

Step: Domain Evolution

Action Create a plan for Domain Evolution.

Input 0 Business objectives

* Domain Definition: Domain Status

PAN&t Domain Plan: Domain Evolution Plan

Hewistis Develop a prioritized set of nea-term domain objectives that will guide
you in domain development. Develop a preliminary statement of domain
objectives that identifies targeted projects and !heir needs. Refine the ob-
jectives to reflect the views of project managers, particularly their percep-
tions of their projects risks and assets of greatest benefit to their projects.
(Refer to the heuristics for the Domain Development step for suggestions
on a risk-based management process that you can also apply in performing
this step.)

*Identify any previously built systems that are tG be taken as characteristic
instances of the domain and. from which reusable assets are likely to be
extracted.

OPP-18

Try stating objectives in terms of commonalities and variations that
characterize systems in the domain or that arise in the practice of Application
Engineering.

Step: Institute Practices and Procedures

Action Develop and document standard practices and procedures to be followed in
the activities of Domain Engineering.

Input None

AMult Domain Plan: Practices and Procedures

Heuristics 0 Prescribed practices and procedures should encompass administrative,
software development (e.g., requirements and design methods, coding and
documentation standards), project management and control, and quality
assurance (e.g., testing, walkthrough, and review procedures).

"Configuration management procedures are a key element for controlling
iterative domain development. Each iteration of domain development is
represented by one version of each domain engineering work product that
you produce. Feedback on the use of a product version leads to the
creation of a new version in a later iteration of development.

"* Consider how consistency and quality standards will be achieved in

domain practices.

Step: Domain Development

Action Create a plan for developing a domain increment.

Input • Domain Evolution Plan

"* Practices and Procedures

"* Domain Definition: Domain Status

Rnu& Domain Increment Plan

HeUriics A Domain Development increment consists of repeated cycles through a
process comprised of four steps as shown in Figure DE.1-2. This guidance
assumes you are experienced in project management. Refer to the descrip-
tions of the process model and activities for the ESP (Software Productiv-
ity Consortium 1992b) for a detailed project management method that you
can follow to tailor and elaborate this process.

* The Domain Evolution Plan identifies the objectives to be met by the
increment. Identify and rank the domain development risks faced by the
organization in meeting these objectives.

Opp-19

DEL Domain Manapment Acaty

SEvaluate Risks

Objectives

To Schedule

Figure DE.1-2. A Risk-Based Process for Increment Management

- A recurring class of risks that domain development must face is the
near-term ability of targeted application engineering projects to
create required products. Actions to mitigate these risks take
priority over other domain objectives.

- Another important class of risks relates to problems discovered in
previous iterations of domain development.

Develop a prioritized set of near-term increment objectives that address
the risks identified in the risk analysis. These objectives maybe revised, as
Domain Engineering iterates, to meet the Domain Evolution Plan
objectives for the increment.

- A domain-development approach must address the short-term
needs of targeted projects.

- Each objective should have associated success criteria that are
used to determine whether the objective has been met. The success
criteria should be written in such a way that they are directly
measurable (if possible).

- Objectives are often stated in terms of variations that characterize
systems in the domain as represented by a set of work products or
variations to be allowed in the practice of Application
Engineering.

Opp-20

DU± DNb! t5 !t I

- Set objectives for this increment of domain development that
respond to both the risk and the intended result of domain objec-
tives. Increment objectives should address the particular needs of
targeted projects.

"Develop a schedule that allocates resources to tasks.

- Create specific goals and completion criteria for each task. ch
task is characterized by a Domain Engineering activity to be per-
formed and completion criteria appropriate to that activity. The
full set of tasks must address the near-term objectives within the
resource budget provided. If the resource budget does not allow all
the objectives to be addressed, the objectives with the highest
priority should be addressed.

- Plan for short iterations so that mistakes made in front-end tasks
may be caught and corrected quickly in a subsequent iteration. It-
erations at the beginning of the life cycle of a domain should be par-
ticularly short (three to four months) to compensate for the likely
learning curve in domain concepts.

" Monitor domain engineering work progress to planned milestones and
completion criteria.

- The schedule establishes milestones and completion criteria for
activities that are used to evaluate progress. Whenever new issues
are identified or progress differs from that planned, evaluate
whether to document your concerns for future planning or to
revise the current plan for immediate action.

- Document the source, implications, and possible and actual
resolutions of each issue.

3.2 RISK MANAGEMENT

Risk Domain plans will not be met within schedule with allocated resources.

Implication Domain capabilities will fall short of plans.

Mitigation • Review plans with experienced engineers to ensure that planned
development is technically viable.

• Reevaluate domain objectives to provide for shorter iterations that
achieve essential capabilities sooner; defer work on less important
objectives.

Rfsk Domain engineers resist using standardized practices and procedures.

Implication Inefficient operation and employee dissatisfaction will reduce productivity.

Opp-21

DLL1 Domain Uaapamat Actviy

M a• Involve domain engineers in developing practices and procedures.

• Provide education and apprenticeships.

* Conduct pilot projects that emphasize learning new skills over product
delivery.

Afsk Domain engineers fail to recognize when to terminate an iteration.

Iln • There will be excessive detail in products without adequate foundation or
potential benefit.

* Schedules will slip.

Miiaton Review objectives and completion criteria to make sure they are specific and
understood by the domain engineers.

Riik Project needs will not be met by planned development.

Implication Provided reusable assets will not have sufficient value to targeted projects to
justify costs of the domain.

Miiafion Review objectives and plans with project managers to ensure that the needs of
their projects and the projects' customers are properly understood.

Risk Domain plans will not be met within schedule with allocated resources.

Implication Domain capabilities will fall short of plans.

Mitgation * Review plans with experienced engineers to ensure that planned
development is technically viable.

"* Reevaluate objectives and project needs to focus support on key needs of
the targeted project first; defer work on less urgent objectives.

"* Revise the Domain Increment Plan to add or defer activities, or to
reallocate time and resources among planned activities, as priorities
dictate.

4. INTERACTIONS WITH OTHER ACTIVITIES

4.1 FEEDBACK TO INFORMATION SouRcEs

Conftency The Domain Definition and/or Domain Specification fails to provide the

needed capabilities required by the Domain Plan.

Somre Domain Analysis Activity

Response Describe ways in which the Domain Definition and/or Domain Specification
fail to provide the necessary capabilities. Modify schedule to allow completion
of indicated Domain Definition or Domain Specification revisions.

Opp-22

4.2 FzKWCK FROM PRODUCT CoNSUam

C&Vk"&7mcy Project needs are not being met by the domain.

Saoww Project Support Activity

PAW"i 0 Revise the Domain Plan to accommodate new needs.

* Determine that the needs of a project are outside the proper boundaries
of the domain.

Coandiecy Practices and procedures are either ineffective or inefficient.

Soure • Domain Analysis Activity

0 Domain Implementation Activity

* Project Support Activity

Response Revise practices and procedures to reflect domain experience.

Contingecy The Domain Plan is too ambitious for available resources or expertise.

Source Domain Analysis Activity

* Domain Implementation Activity

R•ponse * Allocate additional resources or time to domain development.

0 Refine the Domain Plan to reduce the scope.

Opp-23

D5L.Domm MU=IPiMW Aob*

Thjis page bstatdonally left blank.

Opp-24

DE.2. DOMAIN ANALYSIS ACTIVITY

1. GETTING STARTED

Domain Analysis is an activity of Domain Engineering for studying and formalizing a business area
as a domain. The purpose of formalizing a domain is to leverage knowledge of how recurring and vary-
ing problems from previous projects affect the form and content of application engineering work prod-
ucts for the targeted project. The scope of a domain isa decision based on existing systems and ongoing
projects within the organization. Domain Analysis specifies a standardized Application Engineering
process and work product families to support Application Engineering and verifies that a
corresponding Domain Implementation meets that specification.

1.1 OJErv

The objectives of Domain Analysis are to:

"* Determine scope and viability of a domain based on existing systems, planned domain
development and evolution, and needs of the targeted project

"• Establish, manage, and evolve a set of work product families representing domain knowledge
perceived relevant to the targeted project

"• Describe an Application Engineering process and work product families appropriate to the
domain and relevant to the targeted project

1.2 REQUIRED INFORMATON

Domain Analysis requires the following information:

"• Domain Plan: Domain Objectives

"• Domain Implementation

1.3 REQUIRED KNOWL•ED AND Eximmic

Domain Analysis requires domain and software knowledge and experience in:

"• Past and ongoing projects in the organization

"• The needs that motivate systems in the domain

opM25

"* The environments in which these systems operate

"* How these systems are built

2. PRODUCT DESCRIPTION

Domain Analysis creates two work products: Domain Definition and Domain Specification.

2.1 DoMAIw DvmmmoN

Parpose A Domain Definition (see Section DE.2.1) is an informal description of the
systems and related application engineering work products in a business area
that form a domain. A Domain Definition characterizes how existing systems
and systems being developed in ongoing projects in the domain are similar and
how they differ.

Veriiation The Domain Definition captures sufficient information to allow domain
Citeria engineers to describe accurately any existing or potential system (in particular,

the system being built by the targeted project).

2.2 DoMmN SPECnqCATION

Purpose A Domain Specification (see Section DE.2.2) characterizes work product
families of the domain that are relevant to the targeted project and an
Application Engineering process for constructing members of the respective
work product families.

Verfcation The Domain Specification precisely expresses the domain as captured in the
Criteria Domain Definition.

3. PROCESS DESCRIPTION

The Domain Analysis Activity consists of the three steps shown in Figure DE.2-1.

3.1 PRocEOuRE

Follow these steps for the Domain Analysis Activity.

Step: Domain Definition Activity

Action Characterize the domain to satisfy domain objectives relative to the targeted
project's needs (see Section DE.2.1).

Input Domain Plan

Raukt Domain Definition

Heuritics • Characterize the domain by defining its scope (i.e., classes of systems,
characteristics, or functions included and excluded from the domain) and

Opp26

.."
DmuDomain

Domain
Dmosi brwawi

a ',

FigureDE.2-i. Domnain Analysis Proc..

how included systems are distinguished from one another. Thes definitions
are a basis for judging the qualitative and economic characteristics of the do-
main to determine whether the domain as defined will be exooialy
viable.

"Consider how the work products for the system needed by the targeted
project are similar and distinguishable from work products of existing
systems.

"* Use this definition as a basis for judging the qualitative and economic
characteristics of the domain to determine whether the domain, as
defined, will be economically viable for the targeted project If analysis of
the Domain Definition fails a test of economic viability for the targeted
project, reevaluate the scope of the domain in terms of domain objectives
relative to the targeted project's needs.

SteW Domain Spedcficatmon A•c•ty

Acdon Specify Application Engineering Process Support (see Section DE.2.2).

InpW Domain Definition

AMU Domain Specification

Hwrics Identify and specify work product families appropriate for the domain and
susceptible to reuse. You need to ensure that these families are useful
when application engineers develop application engineering work
products for the targeted project.

Opp27

" Create a specification of standard support for Application Engineering in
the domain. This support describes the process followed to identify work
products that provide the focus of reuse efforts.

" Identify, for each work product family, the decisions that an application
engineer must make to describe fully the variations in the different work
product families. These decisions should accommodate aspects appropri-
ate for the work product family (such as functional [e.g., behavioral] and
nonfunctional aspects [e.g., size, timing, fault tolerance, hardware archi-
tecture, hardware/software configuration]) so that the application
engineer can express his needs.

" Create standardized designs for the work product families. The designs
must satisfy both the common and variable aspects of the work product
family as perceived relevant to the targeted project. A standardized design
includes both design structures that define various views of the work prod-
uct structure and components from which a work product is constructed
that might satisfy the application engineer's needs for the targeted project.

Step: Domain Verification Activity

Action Verify the correctness, consistency, and completeness of domain engineering
work products (see Section DE.2.3 for motivation).

Input * Domain Definition

"* Domain Specification

"* Domain Implementation

Re&t None

Heuristics 0 Verify the consistency and completeness of the Domain Definition.

"* Verify that the representation of the Application Engineering process in
the Domain Specification is consistent and complete with respect to its
representation in the Domain Definition.

" Verify that the representation of the application engineering product in
the Domain Specification is consistent and complete with respect to its
representation in the Domain Definition.

" Verify that the Product Implementation is consistent and complete with
respect to the Domain Specification.

" Verify that the representation of the Application Engineering process in
the Process Support is consistent and complete with respect to its
representation in the Domain Specification.

3.2 RisK MANAGEMENT

Risk The cost of an increment of Domain Analysis is projected to exceed the budget.

OpM- 28

bp~c~timninsuffdent resources exist to complete a planned iteation of Domain

Mifga*xio • Reduce the current scope.

0 Seek a change in domain objectives or an increase in the budget for the
increment from Domain Management.

4. INTERACTIONS WITH OTHER ACTIVITIES

4.1 FmwDAcK To INmFo•RAIoN SoURcS

Condtigecy The Domain Plan cannot be satisfied with available technical capabilities.

Source Domain Management Activity

Rasponse Propose (alternative) revisions to the Domain Plan that better match available
capabilit.':s. Complete a Domain Definition and a Domain Specification that
satisfy the Domain Plan as closely as possible.

Condigency The Domain Implementation does not satisfy the Domain Specification.

Source Domain Implementation Activity

Respons Clarify the intent of the Domain Specification.

Condtcy The practices and procedures specified in the Domain Plan are either
ineffective or inefficient.

Source Domain Management Activity

Response Describe the ways in which the practices and procedures are either ineffective
or inefficient. Propose revisions to the practices and procedures to make them
more effective.

4.2 FýIwucK FROM PRODUCT CONSUMERS

Confingency Suggestions are made for Domain Specification changes to exploit unforeseen
opportunities. For example, a situation where substantial software is made
available for use in the Domain Implementation that was not available when
the Domain Specification was completed.

Source Domain Implementation Activity

Ra-ponse * Revise the Domain Specification.

"* Refer to Domain Management for future planning.

"* Reject the changes due to conflicts with the Domain Definition.

Op-2 9

. nThe Domain Definition and/or Domain Specification fails to provide the

capabilities required by the Domain Plan.

SwC Domain Management Activity

RPepmse Evolve the Domain Definition and the Domain Specification to be consistent
with the Domain Plan.

Comndgeucy The Domain Specification is incomplete, ambiguous, or inconsistent.

Source Domain Implementation Activity

Rasapas Revise the Domain Specification to correct the inadequacies.

Condngeny The standardized Application Engineering supporting work products are
inefficient or lead to less-than-ideal results for the targeted project.

Source Project Support Activity

Response • Determine that the benefits of work product standardization outweigh the
interests of the particular project.

0 Evolve the definition of the Application Engineering supporting work
products to reflect the project's experience or to be adapted to the
particular conditions of concern.

opp. 30

DE.2.1. DOMAIN DEFINITION ACTIVITY

1. GETTING STARTED

Domain Definition is an activity of Domain Analysis for creating a Domain Definition. A Domain
Definition is an informal description of the systems and related application engineering work products
in the business area that form a domain. A Domain Definition characterizes how systems in the
domain, as represented by a set of work products, are similar and how they differ.

1.1 OBJECrIV

The objectives of the Domain Definition Activity are to:

"• Establish a conceptual basis and bounds for more detailed Domain Analysis

"* Determine whether planned development of the domain is viable relative to the needs of the
targeted project and the organization's reuse objectives

"* Establish criteria by which management and engineers can judge whether a proposed system
is properly within the domain

1.2 REQUIRED INFORMArON

The Domain Definition Activity requires the Domain Plan.

13 REQUIRED KNOWLEDGE AND ExPn~mcE

The Domain Definition should be developed by expertz with a variety of backgrounds in the domain
understudy. They need broad domain knowledge. Such knowledge includes what systems have been
built, relevant existing work products (requirements specification documents, design documents,
etc.), and the nature of systems likely to be requested and built, especially by the targeted project.

2. PRODUCT DESCRIPTION

Name Domain Definition

Purpose A Domain Definition establishes the scope of a domain and a justification of
its economic viability. It provides a basis for determining, informally, whether
a system is properly within that scope.

The Domain Definition does not answer detailed questions of scope, but
clearly includes and excludes broad classes of systems and their associated

Opp-31

work products. Assumptions of commonality and exclusion identify the
common features of systems and work products in the domain, thereby
establishing a family. Assumptions of variability identify how systems and
work products in the family are distinguished from one another. Justification
provides a basis for judging technical and economic feasibility of the domain
to evaluate whether there is sufficient confidence in the viability of supporting
work-product reuse by the targeted project for a system in the domain.

Content A Domain Definition consists of the following components:

"* Domain Synopsis. An informal statement of the scope of the domain.

"* Domain Glossary. Definitions of significant terminology used by
experts in discussing needs and solutions in the domain.

" Domain Assumptions. A description of what is common, variable, and
excluded among systems in the domain, as reflected in their associated
work products.

"* Domain Status. An assessment of the current maturity and viability of
the domain relative to its expected use by the targeted project.

" Legacy Products. A representative collection of work products from
cAsting systems in the product line which may be a suitable source of
information and raw material for developing the domain.

Verification Every characteristic ascribed to all systems in the domain by the Domain
Criteria Synopsis must be stated as a Commonality Assumption.

2.1 DOMAIN SYNOPSIS

Purpose The Domain Synopsis is an informal statement of the scope of the domain. It
characterizes systems included in the domain and work products your
organization produces during software development.

Content A Domain Synopsis includes an informal characterization of the systems and
work products that make up the domain.

Form and A Domain Synopsis is a simple narrative using terms defined in the Domain
Structure Glossary. Example DE.2.1-1 illustrates a fragment of a Domain Synopsis for

the TLC domain. This fragment depicts typical information contained in a
Domain Synopsis and the use of terms from the Domain Glossary.

Verification 0 The Domain Synopsis must give an intuitive feel for the definitive
Criteria characteristics of systems -n the domain, as reflected in their associated

work products. It should, in itself, adequately describe any existing system
(in particular, the system being built by the targeted project).

* A term that could have different meanings to different readers may be
used in the Domain Synopsis only if it is defined in the Domain Glossary.

Opp-32

DE2.1. Domain Definition A"t*

The Traffic Light Control Software System (TLC) domain is a family of embedded computer systems to control the
operation of traffic lights at a given intersection. The ILC domain is limited to controlling traffic at intersections of two
roads with at most one road dead-ending at the intersection. Systems in the TLC domain control traffic at the intersection
by changing the indicators of each traffic light (called a traffic light sequence). Each traffic light sequence is coordinated
with the other traffic lights in the intersection to prevent accidents while vehicles traverse the intersection. Usually, a TLC
system generates its traffic light sequence based on a dock-generated cycle which may last from one (1) to three hundred
(300) seconds. The traffic light sequence generated from the dock may be modified based on signals from optional input
devices.

One optional input device is a trip mechanism buried under the roadway. A trip mechanism may be associated with either
a left-turn lane, a right-turn lane or a thru-traffic lane. Input from a trip mechanism associated with a left-turn lane
controls whether the left-turn indicator of the traffic light is turned on during a traffic light sequence. A trip mechanism
associated with a right-turn signal may act in an analogous manner for a right-turn signal. Inputs from any trip mechanisms
may alter the traffic light sequence. A trip mechanism is not required for the proper operation of the turn lane.

Another optional input device is the pedestrian crosswalk push button. This input controls whether the walk/don't walk
indicator is on during a traffic light sequence. It may also modify the traffic light sequence. Apush button is not required
for the proper operation of the pedestrian lane.

Example DE.2.1-1. Fragment of TLC Domain Synopsis

2.2 DOMAIN GLOSSARY

Purpose The Domain Glossary is a compendium of precise definitions for all significant
terminology used by experts for discussing problems and solutions in a
domain. This domain terminology is organized into a taxonomy of terms.

Content A Domain Glossary has two parts:

"* A set of standard terms and their definitions

"* A list of references to external sources which define and elaborate on
relevant topics and terminology

Form and A reference to an external source is written using an accepted documentation
Structure style for a reference (e.g., author-date). Standard terms are defined in

alphabetical order using the following forms:

Term 1 definition (source)

Term 2 (1) first definition (source); (2) second definition (source)

The source of the term's definition (source) is listed after the definition.
Example DE.2.1-2 illustrates a fragment of a Domain Glossary for the TLC
domain. This fragment depicts typical terminology needed to discuss systems,
problems, and solutions in the TLC domain.

Verification The Domain Glossary must contain precise definitions of all significant
Criteria terminology used by domain experts for discussing the requirements or

engineering of systems in the domain or their associated work products.

Opp-33

DE.2.1. Domain Definition Activity

Term Definition

Crosswalk A specially paved or marked path for pedestrians crossing a street or road.1

Crosswalk Push Button A monitoring device which allows a pedestrian to signal to the system his presence
at a crosswalk.

Trip Mechanism A traffic monitoring device used to determine whether a vehlide is present in a lane.

Traffic Control A synchronized set of traffic light sequences specified as a function oftime and traffic
monitoring device inputs.

Traffic Light A set of indicators placed at the intersection of streets to regulate traffic.

Traffic Light Cycle One iteration through a traffic light sequence, i.e., from the display of the red
indicator through to the next display of the red indicator.

Traffic Light Sequence The order in whi"-h a set of traffic light indicators are displayed during a traffic cycle.
Typically, this ordering is red, green, amber, but other orderings are possible.

Traffic Monitoring Device A device that monitors the flow of traffic.

1 Webster's Third New International Dictionary of the English Language Unabridged.

Example DE.2.1-2. Fragment of TLC Domain Glossary

" Any term used in a definition that could have different meanings to
different readers must also be defined.

" All independently-used terms that are generalizations, specializations, or
components of defined terms must also be explicitly defined.

" Terms defined in the Domain Glossary must be sufficient for a domain
expert to give an accurate description of any existing system an" 'he system
being built by the targeted project.

2.3 DOMAIN ASSUMPTIONS

Purpose Domain Assumptions describe what is common to all systems or their
associated work products in the domain and in what significant ways those
systems and work products vary and can be distinguished. These assumptions
determine, informally, whether a system, as represented by a set of work
products, is within the scope of the domain.

Content There are three types of assumptions:

opp-34

" ConneAa mjm A set of assumptions about the tharaei
that are common to all systems in the domain and their associated
work products (commonalities).

SVariabilityAumpons. A set of assumptions about the characteristics
that distinguish systems in the domain and their associated work
products (variabilities).

" ExcwiuonwyAsumpdons. A set of assumptions about the characteristics
of systems and their associated work products that are outside the
scope of the domain (exclusions).

Every assumption is composed of a description and justification.

Assumptions may also be elaborated with associated, subordinate
assumptions. For example, a commonality assumption may have specific
variabilities associated with it. Similarly, a particular resolution of a variability
assumption can be thought of as characterizing a subfamily of the product
family. The subfamily then may have additional, more specific commonalities
and variabilities that further distinguish the members of the subfamily.

Form and An assumption description and justification are informal text. Assumptions
Structure which elaborate another assumption should be presented in adjacent,

indented text. Examples DE.2.1-3 and DE.2.1-4 illustrate fragments of some
commonality and variatiity assumptions for the TLC domain. The
justification provides rationale on why the domain engineers believe the
assumption to be valid.

Vefication Commonality and variability assumptions must capture all important
Criteia aspects that are common to all systems in the domain, as represented by

a set of work products, and the significant ways in which these systems and
their work products can vary. Exclusionary assumptions must not exclude
needed capabilities.

* Systems and their work products must only vary as implied by the
variability assumptions.

"A commonality assumption niust apply equally well, without qualification,
to any system ni the domain, as represented by a given type of work prod-
uct. Systems, as represented by their associated work products, must not
violate a stated commonality, either by excluding an included feature in
the commonality assumptions or by including an excluded feature in the
exclusionary assumptions.

" All reviewers must agree that domain experts will consider Domain
Assumptions to be consistent and unambiguous, relative to the definitions
in the Domain Glossary. A term that could have different meanings to dif-
ferent readers may be used in a Domain Assumption only if it is defined
in the Domain Glossary.

Opp 35

DE2.1. Domain Definition MtIN

A LC system controls the traffic light sequences at an intersection.

JusiftadIn The purpose of a TLC system is to control when traffic light sequens change, and the
interactions of the traffic lights at an intersectki.

A TLC system coordinates all traffic lights at an intersection.

Juidficadn Safe transit of intersection requires that streams oftraffic not am eg, east bound traffic
and north bound traffic cannot have pe•e indicators ooncrrently.

* The entire week is divided into traffic cycles. The traffic lights at the intersection are synchronized based on
these traffic cycles.

Justification Traffic patterns and loads vary over the course of a day and of a week. The timing of the
traffic cycles must be varied to deal with the variations in the traffic load.

SA TLC system must process signals from a trip mechanism or push button within a specified time.

Justificadon Smooth traffic flow depends upon the TLC system detecting and responding to requests to
a traffic light sequence in a timely manner.

Example DE.2.1-3. Fragment of TLC Commonality Assumptions

2.4 DoMAN STATUS

Purpose Domain Status describes the current technical maturity of the domain that the
organization has achieved relative to planned evolution, and assesses the
viability of evolution. Of particular concern are unsupported variability
assumptions (i.e., default commonalities).

Content The Domain Status is an informal characterization of the degree to which
Domain Objectives are satisfied by past development. It includes an analysis
of how well the needs of the targeted project are being met by the domain.

Form and The maturity of a domain can be expressed as limitations in satisfying
Structure variability assumptions. Risks can be mitigated by imposing limits on

variability assumptions.

2.5 LEGACY PRODUCTS

Pwpose Legacy Products provide access to work products from existing systems that
may be useful sources of information and raw material for developing the
domain.

Opp.36

~~R D amais• alleadm •t

An mtersectica may be formed fiam two tlrougca dsi (an X itawwion). or f•mc one tlhough road and a
dead-ending road (a T interse~tkm).

Ju.Vkvdbx The number of roads that can meet at an intersection can vary from intersection to
intersection. At least two roads must crom to hale an intersectimo. but intersections of three
or more roads are common. The marketing department believes that the vast majority of
intersections are of the T and X variety. It has decided to concentrate on this large subset
of traffic intersections.

* The number of lanes of traffic on any road approaching or leaving the intersection may vary. The minimum
number of lanes of traffic is one (1). The maximum number is six (6).

JusdfatiUon Any road bringing traffic into the intersection must have at least one lane of traffic into the
intersection. Any road leaving the intersection must have at least one lane of traffic from
the intersection. Engineering has determined that the hardware comiponents of the system
cannot control more than six lanes of traffic in a timely fashion.

* Any road approaching the intersection may have a trip mechanism buried under the traffic lanes to alert the
system to the presence ofvehicular traffic. There may be no trip mechanism or there may be one (1) per traffic
lane.

Justification The traffic light sequence may take into account the presence or absence of vehicular traffic
at the intersection.

* The duration of a traffic control schedule will vary.

Justification Traffic patterns and volumesvary from intersection to intersection. Effective traffic control
at these intersections requires schedules that take these variations into account. Traffic
control schedules must also vary to account for differences in system configurations.

Example DE.2.1-4. Fragment of TLC Variability Assumptions

Content Legacy Products consists of a representative collection of work products (or
portions thereof) from existing systems in the product line to be supported by
the domain.

Form and 0 Work products may be physically stored, on paper or in electronic media,
Structure or may only be identified by reference when sufficiently accessible in this

way (e.g., in an organization's local library or in an accessible repository
set up for another, existing domain).

0 Work products are kept in Legacy Products in the form in which they were
produced. Other, consuming activities of Domain Engineering will copy
and excerpt or adapt these work products, as needed, in order to create
reusable assets.

Opp-37

WU.-1.. LJWD5ID LM4UfLuMU 06=WtIy

The work products comprising the Legacy Products are organized in a
suitable manner to provide access by other Domain Engineering activities
to a particular system's work products or to individual work products of a
particular type.

V c~aion Each work product in Legacy Products must come from an existing system that
C teria was determined to be in the domain.

3. PROCESS DESCRIPTION

The Domain Definition Activity consists of the five steps shown in Figure DE.2.1-1.

aPla
Derine the Domain

Pao a•r

SDomnain

Folowthsestps orth man Esintabish Actiaity

Opp-3pIS

Doai aupi Pout

Somaindd Tperminaol; omai aeiia n omi ttsSau

aiueE1-.Dmi Deintoman rtflif £ssY

Folo ths tesfr)h omi einito Actiuvitony.

a a8

Stkp Nh. the Doom" Jft oafy

Acion Create a description of the domain, characterizing key technical objectives of
included systems.

hyt Domain Plan: Domain Objectives

Rauk Domain Definition: Domain Synopsis

Hauisdcs 0 Start with a one-sentence description of the family of systems that constitutes
the domain.

0 Refine the Domain Synopsis to two pages, at most, of intuitive and not
overly-restrictive text. Impart, concisely, an informal but complete sense
of the domain in the first paragraph. MIy to focus on the essential nature,
scope, and variety of systems in the domain.

* Characterize the type of problem that systems in the domain solve, and the
external environment (i.e., devices, systems, and users) with which systems
interact. Describe the observable behavior that systems exhibit in solving
the problem. You might also establish significant constraints concerning
how the systems operate in terms of performance, reliability, or distribution
concerns.

" Cover the primary functions performed by every system in the domain and
any important functions performed by only some systems. Maintain a
black-box perspective when describing functional aspects of the system.

"* Be sure your descriptions of problems and functions characterize the
system to be produced by the targeted project.

"• Use terms defined in the Domain Glossary to keep the Domain Synopsis
short.

" If the domain (e.g., process control systems) is based on formal theories
that provide experts with a common language of communication about
problems, refer to those theories in the Domain Synopsis.

Step: Establish Standard Terminology

Action Create definitions of all significant terms used by domain experts in discussing
the requirements or engineering of systems in the domain or their associated
work products.

hnpus Domain Definition: Domain Synopsis

IksU Domain Definition: Domain Glossary

Heuristics * Maintain term definitions in alphabetical order for ease of reference.
Provide cross-references to related terms.

Opp-39

• Use definitions from standard glossaries where possible. Make note of
such sources in each definition for future traceability.

• Make definitions as precise as possible.

* Make sure that all terminology used in the Domain Synopsis is defined in
the Glossary.

Step: Establish Domain Assumptions

Action Create lists of the assumptions that allow you to think of the envisioned set of
systems as a family and the assumptions that allow you then to distinguish
among them and their associated work products.

Input • Domain Definition: Domain Synopsis

* Domain Definition: Domain Glossary

Result Domain Definition: Domain Assumptions

Heuristics • State only those assumptions that affect the system software and
associated delivered products (e.g., documentation, test support).

" Initially, concentrate on assumptions related to system functionality.
Expand your focus to design issues and to assumptions about related work
products.

" Assumptions often come from knowledge or analyses of work products of
Legacy Products. If some assumptions relate only to a particular type of
work product, then group those assumptions apart from the generally
more applicable assumptions.

"* To create a preliminary set of assumptions:

- Create a commonality assumption for each characteristic specified in
the Domain Synopsis that is shared by all systems in the domain.

- Create a variability assumption for each characteristic specified in
the Domain Synopsis that is not shared by all systems in the domain.

- For each term in the Domain Glossary, determine whether the term
indicates a commonality or a variability among systems in the
domain. Create an assumption accordingly.

" Make variability assumptions precise by indicating the type of decision the
application engineer must make to resolve the variability. It is not suffi-
cient to note only that some characteristic varies. You must establish how
much flexibility the application engineer needs to characterize different
systems adequately.

Op,40

" Elaborate commonaity assumptions to uncover specific variabilities
assumptions associated with them. This will more precisely characerize
a subset of the product family.

" Elaborate variability assumptions to find more specific commonality and
subsequent variability assumptions that further distinguish members of
the subfamily.

" Compare the characteristics of existing systems to facilitate the identification
of common features and variations.

" Distinguish between system-generation-time and run-time variations
when developing assumptions about variable aspects of the domain. Treat
a run-time variation that is characteristic of all systems in the domain as
a commonality.

" Use exclusionary assumptions to clarify a domain's boundary. Do not
enumerate every type of system or function that is outside the domain.
Rather, exclude explicitly those functions or characteristics that a domain
expert might incorrectly assume to be part of a system when reading the
Domain Synopsis. Thus, you can answer the question of whether a particu-
lar system belongs within the domain more directly by checking the
exclusions. Exclusions often result from a viability analysis of the domain.

" State unresolved issues of functionality, design, etc., from the targeted
project as variability assumptions. This will help you identify the full range of
existing work products that might meet an anticipated Application
Engineering need.

Step: Assess Domain Status

Action Evaluate the technical maturity of the domain in terms of targeted project
needs, Domain Objectives, and plans for domain development.

Input * Domain Plan

* Domain Definition: Domain Assumptions

Result Domain Definition: Domain Status

Heristics Domain Status must result in an endorsement of and commitment to a specific
domain scope (set of assumptions). This endorsement comes from targeted
project needs, as tempered by the intuitions of experienced personnel, and
resource constraints (e.g., what products are available). In other words, you
should assess which Domain Assumptions are currently satisfied versus which
should be satisfied. Of those which should be satisfied, assess which can be
satisfied using existing resources and which can be satisfied using resources
presumed to be available at some future date. This information should help
you determine whether the features associated with each assumption are
implementable, and the corresponding risk.

Opp4l

Step: Ideatify Legacy Products

Action Identify existing systems in the product line that are considered representative
of the domain and whose work products may prove useful as sources of
information and raw materials in developing the domain.

Input • Domain Synopsis

• Domain Assumptions

Resu Domain Definition: Legacy Products

Heuristics * Use the Domain Synopsis as a guide to select existing systems that are
within the domain (or subsystems that would be parts of such systems).

" Based on Domain Assumptions, identify work products (or fragments, if
appropriate) from these systems that reasonably satisfy some or all of the
Domain Assumptions.

" Create a brief description of the selected systems and work products as a
guide to their use as a source of information and raw materials by other
Domain Engineering activities.

3.2 RISK MANAGEMENT

Risk There is a lack of critical expertise.

Implication The Domain Definition cannot be completed or there is unacceptably low
confidence in the results.

Mitigation * Commit time and resources to acquiring the expertise.

0 Restrict Domain Assumptions sufficiently to reduce the need for experise.

Risk The scope of the domain may be too narrow, precluding useful variations.

Implication 0 Opportunities for additional projects are lost.

* Application engineering projects miss opportunities for reuse.

Mitigation * Review the Domain Definition with management and experienced engineers
to identify additional variations.

* Include unresolved issues from the targeted project.

Risk The scope of the domain may be too broad.

Implication Resources are misapplied to solve an unnecessarily general problem; the
result will be parts that require so much hand-tailoring that the cost of reuse
becomes higher than that of developing parts from scratch.

Opp-Q2

Mit! 11 * Review the Domain Defiition with management and csperienced

to identify under-constrained Commonalities.

* Focus variations on the needs of the targeted project.

Rfsk Domain Assumptions are too precise or too vague.

Implication Flexibility is reduced unnecessarily, or key decisions are left to the discretion
of domain engineers.

Mitiation Review the Domain Definition with management and experienced engineers
to identify over- or under-constrained Domain Assumptions.

4. INTERACTIONS WITH OTHER ACTIVITIES

4.1 FEEDBACK TO INFORMATION SOURCES

Contingency The Domain Plan cannot be satisfied with available technical capabilities.

Source Domain Management Activity

Response Propose (alternative) revisions to the Domain Plan that better match available
capabilities. Complete a Domain Definition that satisfies Domain Objectives
as closely as possible.

Contingency The practices and procedures specified in the Domain Plan are either

ineffective or inefficient.

Source Domain Management Activity

Response Describe the ways in which the practices and procedures are either ineffective
or inefficient. Propose revisions to the practices and procedures to make them
more effective.

4.2 FEEDBACK FROM PRODUCT CONSUMERS

Contingency The Domain Definition fails to provide the capabilities required by the

Domain Plan.

Source Domain Management Activity

Response Evolve the Domain Definition to be consistent with the Domain Plan.

Contingency The Domain Definition is incomplete, ambiguous, inconsistent, or incorrect.

Source * Domain Specification Activity

* Domain Verification Activity

Rponse Revise the Domain Definition to correct the inadequacies.

Opp43

This page intentionally left blank

opp 44

DE.2.2. DOMAIN SPECIFICATION ACTIVITY

1. GETTING STARTED

The Domain Specification Activity is an activity of Domain Analysis for creating a Domain
Specification. A Domain Specification is a description of the Applicat im Engineering process for a
domain and a definition of a collection of work product families that support reuse within that process.
The Application Engineering process used by projects in the domain determines the types of work
products whose creation could be supported by reuse. For targeted application engineering projects,
those work products that offer the greatest opportunities for reuse are designated for formulation as
a family.

A description of a work product family consists of a description of how members of the family vary,
an abstract of the content of its members, and a specification of the design (i.e., composition and struc-
ture) of its members. The descriptions of content and design must allow for the diversity among
members indicated by the described variation in the family.

1.1 OBJFerlVm

The objectives of the Domain Specification Activity are to:

"* Create a precise specification of the work product families that Domain Engineering provides
to application engineering projects

"* Identify a collection of work product families that will provide targeted application
engineering projects with optimal reuse opportunities within their existing process

1.2 REQUIRED INFORMATION

The Domain Specification Activity requires the Domain Definition.

1.3 REQuIRm KNOWLEDGE AND ExPmU'cE

The Domain Specification Activity requires domain and software knowledge and experience in:

"* Past and current systems in the domain

"• The process that projects in the organization use to construct application engineering work
projects

"* Creating work products upon which reuse in the domain is to be based; expertise in what
motivates differences in their form and content

opW4 5

• The concepts and structures that are convenient forms by which to communicate about the
distinguishing features of work products in the domain

2. PRODUCT DESCRIPTION

Name Domain Specification

Purpose A Domain Specification is a description of the Application Engineering
process for a domain and a set of work product families that support reuse in
that domain. Domain Specification identifies a collection of work product
families which the targeted project can reuse (through adaptation and
tailoring) to produce individual work products that meet the needs of its
particular customer.

Content A Domain Specification consists of one of each of the following components:

Decision Model. A Decision Model identifies, for each work product
family, the application engineering requirements and engineering de-
cisions that determine how members of the work product family can
vary (see Section DE.2.2.1). A Decision Model has one component for
each supported work product family.

Product Requirements. Product Requirements describe, for each work
product family, the abstracted content of the members of the family
(see Section DE.2.2.2). Product Requirements have one component
for each supported work product family.

Process Requirements. Process Requirements describe the established
process of Application Engineering within a domain (sce Section
DE.2.2.3). It identifies the types of work products produced, and the
types of work products for which families may be provided.

Product Design. A Product Design determines, for each work product
family, the structure and composition of solutions provided by mem-
bers of the work product family (see Section DE.2.2.4). A Product
Design has one component for each supported work product family.

Verkication Problems and solutions typical both of existing application engineering work
Criteria projects and of the needs of the targeted project are adequately addressed

within the perspective of the Domain Specification.

3. PROCESS DESCRIPTION

The Domain Specification Activity consists of the five steps shown in Figure DE.2.2-1.

3.1 PROCEDURE

Follow these steps for the Domain Specification Activity.

Opp46

DE 2± Doi Speejftfio A"*I

* a

a a

- -I - I

aII I* m Decisioni

a Ia

a 1~Prductaa

Identif
PProduct Families--

aftodud D...1o

Doai a onn atn an
woarProduct tPfoduct

Input DomainuDefini and

Stp Process Requirements Atvt

Heuristcs *Identify the types of work products, resulting from the Application
Engineering process, that are normally used by projects in the domain.

Opp-47

DL2.L Doem uh SP M~ AN

Make allowance for any deviations known to be required by the targeted
project.

Determine how the process of work product development used by individual
application engineers is to be modified to exploit reuse opportunities.
Section AE provides a description of a typical process modified for reuse.

Step: Identify Work Product Families

Action Identify work product families targeted as the focus for increasing
opportunities for reuse.

Input Process Requirements

Result None

Heuristics • Identify those work product families that offer the best opportunities for
reuse by the targeted application engineering project.

* A survey of existing work products is the primary basis for determining
which types of work products should be supported with families. Focus the
survey on what is available and what the targeted project will need.

Step: Decision Model Activity

Action Define the set of requirements and engineering decisions that an application
engineer must resolve to select an instance from a designated work product
family.

Input Domain Definition

Resut Decision Model

Heuristics 0 Perform this step for each designated work product family. Define the
decisions that lead to expected differences among the members of the family.

" A Decision Model for a work product family should reflect the decisions
that application engineers had to make when creating such work products
in previous projects.

" The Decision Model for a work product family should reflect the variability
assumptions from the Domain Definition that are relevant to this particular
work product family.

" Ensure that supported decisions are sufficient to distinguish each existing
work product from other members of the family.

" Identify logical relationships among the decisions that characterize a work
product family and use them to structure the Decision Model. Such rela-
tionships can reduce the number and complexity of separate decisions that
application engineers have to make.

OPP48

Stop Product Rquliremuts Activity

Acto Describe the content, in abstracted form, of the members of a designated work

product family.

I/Pu • Domain Definition

9 Decision Model

Pink Product Requirements

Hewiwis * Perform this step for each supported work product family. Describe the
content of family members as briefly as possible without omitting key in-
formation.

* lb the degree that application engineering decisions change work product
content, describe how content varies with respect to those decisions. This
description will provide a partial basis for explaining the meaning of
decisions to application engineers.

Step: Product Design Activity

Action Define the design (i.e., composition and structure) of the members of a
designated work product family.

Input • Decision Model

"* Product Requirements

"• Domain Definition: Legacy Products

Resu Product Design

Heistks * Perform this step for each supported work product family. Create a design
for the work product family. An annotated outline is one model of a Prod-
uct Design for a document work product family. An information hiding
structure and process structure from the Ada-based Design for Real-Time
Systems (ADARTSS) (Software Productivity Consortium 1993) design
method are models of a Product Design for a software work product fami-
ly..

A key element of domain knowledge is how existing instances of the
designated work product family are designed. When feasible, derive the
initial Product Design for a family by extracting the design essentials of
existing instances. Ensure that the composition and structure of existing
instances are appropriately reflected in the design.

To the degree that Application Engineering. decisions change work
product composition and structure, describe how composition and struc-
ture vary with respect to those decisions. This description will provide a

ow49

further, but still partial, basis for explaining the meaning of decisions to
application engineers.

3.2 RISK MANAGFMENU

R k The Domain Specification does not accommodate work products that meets
the needs of the targeted application engineering project.

Implication The domain will not provide sufficient opportunities for reuse by the targeted
project.

Mitigation Compare previously developed application engineering work projects that
should be within supported families with expected needs of the targeted
project. Check that likely differences are accommodated.

4. INTERACTIONS WITH OTHER ACTIVITIES

4.1 FEEDBACK TO INFORMATION SOURCES

Contingency The Domain Definition is incomplete, ambiguous, or inconsistent.

Source Domain Definition Activity

Response Describe the inadequacies in the Domain Definition. Proceed with Domain
Specification, and document any assumptions made regarding the inadequate
portions of the Domain Definition.

Contingency The Domain Plan cannot be satisfied with available technical capabilities.

Source Domain Management Activity

Reonse Propose (alternative) revisions to the Domain Plan that better match available
capabilities. Complete a Domain Specification that satisfies the Domain Plan as
closely as possible.

Contingency The practices and procedures specified in the Domain Plan are either

ineffective or inefficient.

Source Domain Management Activity

Response Describe the ways in which the practices and procedures are either ineffective
or inefficient. Propose revisions to the practices and procedures to make them
more effective.

4.2 FEEDACK FROM PRODUC= CONSUMRS

Coningency Suggestions are made for Domain Specification changes to exploit unforeseen
opportunities. For example, a situation where substantial software is made
available for use in the Domain implementation that was not available when
the Domain Specification was completed.

opp.o

DE.212 Damula SPsci0do AA[Why

Source Domain Implementation Activity

Response * Revise the Domain Specification.

"* Refer opportunities to Domain Management for future planning.

"* Reject the changes due to conflicts with the Domain Definition.

Contingency The Domain Specification fails to provide the capabilities required by the
Domain Plan.

Source Domain Management Activity

Response Evolve the Domain Specification to be consistent with the Domain Plan.

Contingency The Domain Specification for a work product family is incomplete,
ambiguous, inconsistent, or incorrect.

Source * Domain Implementation Activity

0 Domain Verification Activity

Rkponse Refine the Domain Specification to correct any inadequacies.

Condiency The standardized Application Engineering process for developing application
engineering work projects from a supported work product family is inefficient
or leads to less-than-ideal results for the targeted project.

Source Project Support Activity

R•ponse Revise the Application Engineering process to reflect the problems
encountered.

Contingency Supported work product families are not useful for the targeted project.

Source Project Support Activity

Response 0 Determine that the nature of the problem and the consequent costs of
upgrading the work product families outweigh expected benefits to the tar-
geted project.

* Evolve the domain engineering work product family to reflect this project's
experience or to be more flexible under the particular conditions of concern.

OMp1

Mhi page intentional~y left blank

OppS2

DE.2.2.1. DECISION MODEL ACTIVITY

1. GETTING STARTED

The Decision Model Activity is an activity of the Domain Specification Activity for producing a
Decision Model. A Decision Model defines the set of requirements and engineering decisions that
an application engineer must resolve to describe and construct a draft application engineering work
product. A Decision M-del is an elaboration of a domain's variability assumptions and is the abstract
form (i.e., concepts and structures) of an Application Modeling Notation for a work product family.
These decisions, and the logical relationships among them, determine the variety of work products
in the domain. To construct a work product, these decisions must be sufficient to distinguish the work
product from all other members of the family. The decisions establish how work products of
application engineering, including software and documentation, can vary in form and content.

The Decision Model Activity is performed for each targeted work product family in the domain.
Consequently, there will be a Decision Model (i.e., decisions and logical relationships among them) for each
targeted work product family. The work product family's Decision Model is viewed as a partition of the do-
main's Decision Model. The focus of the interactions with other Synthesis activities occurs at the work
product family's Decision Model.

1.1 OBjEcrvEs

The Decision Model Activity defines a set of decisions that are adequate to distinguish among the
members of an application engineering work product family and to guide adaptation of Adaptable
Components that are composed to form application engineering work products.

1.2 REQUIRED INFORMATION

The Decision Model Activity requires the Domain Definition.

1.3 REQUIRED KNOWLEDGE AND EXPERIENCE

The Decision Model Activity requires domain and software knowledge and experience in:

" Conceptual modeling skills similar to those needed to create a database conceptual schema;
see, for example, Kent (1978) and Borgida (1985)

"* The issues that experienced engineers resolve when constructing systems in the domain

2. PRODUCT DESCRIPTION

Name Decision Model

Opp-53

PUrpse A Decision Model specifics the decisions that the Application Modeling
Notation must allow an application engineer to make in describing an instance
of a work product. These decisions determine the extent of variation in form
and content that is possible in the work product belonging to the family.

To interpret fully the effects of decisions (i.e., to understand all properties of
the family member identified by a set of decisions) requires both a Decision
Model and a Product Requirements. The Decision Model specifies only the
variations among members of a family. It does not specify their common
properties. Product Requirements state the common properties, plus the
effects of the decisions in a Decision Model.

Content The Decision Model work product consists of three components:

"* Decision Specicrations. Specifications of the set of decisions that suffice
to distinguish among members of a work product family.

"* Decision Groups. A structuring of the decision specifications into
logical groups, based on domain-related criteria.

"* Decision Constraints. A set of constraints on the resolution of
interdependent decisions.

Form and A Decision Model can be represented by one of the following forms:
$Imht~re

0 List of questions

* Tabular format

In the question-list format, each decision is phrased as a question and a
non-empty set of valid answers. The question identifies the decision that an
application engineer must make. The set states all permissible answers to that
question.

In the tabular format, each horizontal row in the table expresses a decision
specification. The horizontal row is divided into columns. A column identifies
either the decision that an application engineer must make, the permissible
answers for that decision, or a brief description of the decision.

Each decision and each decision group must have a unique identifier. Domain
engineers use this identifier when they define adaptable work products. Each
decision group has one list or table that is labeled with a mnemonic
appropriate to the group. The group is a set of related decisions. Each entry
is an independent decision that has its own distinct mnemonic label, a
specification of allowed values that can resolve the decision, and a short
explanation of the meaning of the decision.

If a set of related decisions is always resolved as a unit, you can define the set to
be a composite decision. Composite decisions are shown in tabular form using a
combination of the composite of indicator and indentation. If the application

Opp-54

DE22.1. Deciion Model Adifty

engineer can choose to resolve one (and only one) decision from a set of
alternatives, you can define the set to be an alternative decision. Alternative
decisions are shown in tabular form using a combination of the alternative of
indicator and indentation.

You can also use a tabular format to specify constraints on decision making.
Decision constraints may be either structural or dependency. In both cases, a
decision group (the Decision Group column) is specified as the focus of the
decision constraint. A structural constraint is a decision constraint that limits
the number of instances of a decision group in an Application Model. Valid
entries include exactly-one, one-or-more, zero-or-one, zero-or-more, and
one-for-each X, where X corresponds to other identified decision groups. A
dependency constraint is a decision constraint that specifies how decisions
made by an application engineer affect subsequent decisions.

Example DE.2.2.1-1 illustrates a fragment of a Decision Model for a work
product family of the TLC domain. The figure portrays decision groups (e.g.,
Street, LaneGroup) and their corresponding decisions, along with
appropriate constraints.

TLC SSS: composed of
Geometr. one of {intersection geometry)

X: list length 4 of Street {street characteristics for an X intersection)
7 list length 3 of Street {street characteristics for a T intersection)

HW Platform: composed of
Platform: one of (TLC1, TLC2, TLC3) {hardware platform the software will execute on)
Interface: one of (TL-A, TL-B) {type of interface to traffic light indicators)

Street: composed of
ThroughLanes: Lane..Group {characteristics for the thru lanes)
Left Turn Lanes: Lane.Group {characteristics for the left-hand turn lanes)
RightFTainLanes: LaneGroup fcharacteristics for the right-hand turn lanes)
PedestriaznLane.: PL Group {characteristics of a pedestrian lane)

LaneGroup: composed of
TripMechanism: one of (yes, no) fdesignates whether the lanes have a trip mechanism)
TirnLight: one of (yes, no) (designates whether the lanes have a separate turn light)

PLGroup: composed of
PushButtonMechanismL one of (yes, no) (designates whether the pedestrian lanes have a push

button mechanism)

Constraints
- A ThroughLanes group must be specified for each Street.

Example DE.2.2.1-1. Fragment of TIC Decision Model for the System/Segment Work Product Family

Opp-55

k •e~ Every decision munt be an elaboration of one or more variability
0*wfu assumptions or reflect variations that are characteristic of existing work

product family members.

All Domain Assumptions pertinent to the work product family must be
elaborated in at least one decision.

3. PROCESS DESCRIPTION

The Decision Model Activity consists of three steps shown in Figure DE.2.2.1-1.

Domai

r----- ---.

Figure Dec2is -.ion in oelPocs

D ecisions Specictions

Follo thee stps fr DecsionMoDecAitvity

tep:etif IdenifyDeciion

Rmd• ~~~ Deisonspciictin
Ilmriss • Drive dcisios dirCtyfonsmvraiinty aossptioins. o illkl

opp.o

ardu PauvmPomRqbms
aidu aeqa r~aIpmwf

aimF2211 DeiinMde rcs

aNN Vaibltasupin

au Deiso specsiificcisions

aeý~ Deiedcsosdrclarmvraiiyasmtos o illkl

derve dultpedecisiomnts ProessiRequiements, iy sumtin ec

Actin Idntif thedecisionis an a e appliation eniner casmkotmesle allec of the bscvraiiy

vaitos o or rdcto yse nth oan

DE2.2.1. Dodsio Maded Aqt

" Derive decisions by examining relevant work products of existing systems.
Even when you derive decisions from variability assumptions, you should
examine these work products to help you understand how to express deci-
sion specifications in a form that is natural to the domain (e.g., data types,
units).

" When you derive decisions by examining existing work products, use
domain concepts to express the value space of the answers. This will help
application engineers resolve decisions. In other words, if you have three
work products that are members of the same family, identify values for
answers that suggest differences among the work products.

" Keep in mind that the relevant decisions are those concerning system
generation time, rather than run-time variation. If you followed a similar
heuristic in identifying Domain Assumptions, run-time decisions should
not be an issue here. Your focus now should be on how members of a work
product family differ, rather than on ways in which a member varies its be-
havior at run-time. However, if members of a work product family have
variable run-time behavior, then a valid decision may concern whether or
how a particular member varies its behavior.

" If a variability assumption asserts that a certain characteristic of systems
in the domain is variable without saying exactly how it varies, you must de-
termine exactly how the characteristic can vary with respect to the work
product family you are analyzing. Specify the precise type of information
that will resolve a decision.

" Avoid routinely providing decisions that dictate arbitrary implementation
limits (e.g., maximum number of users) unless those limits reflect a policy
decision. Optimization of a system requires adequate flexibility.

Create a separate Decision Model for each application engineering work
product family. However, you will probably want to share decision specifi-
cations across the models, especially for work product families of the same
types (e.g., families of code).

When you examine existing work products, you sometimes gain a fuller
understanding of differences by analyzing and comparing their structure.
Structural analysis is part of the Product Architecture Activity. Verify the
completeness of your Decision Model using the knowledge gained from
performing the Product Architecture Activity.

Derive at least one decision from every variability assumption that the
Domain Plan says you are to support. You need not elaborate the answers
for a decision if you do not fully understand its range. Instead, you can
choose an answer that arbitrarily fixes the decision. The Decision Model,
therefore, contains the normal set of decisions an application engineer ex-
pects to make when building a work product in the domain. Thus, he can
follow a familiar decision-making process.

Opp-5 7

nnWn /. .1 7 - a - 1 - - 1 1 ý - - 7 1 I I W T.

Step: Structure Decisions

Action Organize decisions into logically-related and interconnected groups.

I"Ut Decision specifications

AMU Decision groups

Heuriotis Each decision group should represent a coherent and cohesive concept to
domain experts. Such concepts usually have recognizable names. A con-
cept may be independent of other concepts, or may be an aggregate arn-
cept that unifies other simpler concepts. In other words, a decision group
may include both individual decisions and decision groups as elements.

Structure the set of decisions based on the principle of separation of
concerns (Dijbstra, Dahl, and Hoare, eds. 1972). For example, create a de-
cision group for decisions that correspond to features of a single,
physically-distinct entity.

Group together mutually-dependent decisions, i.e., those that are unlikely
to change independently. Domain experts often rely on a single concept
that ties dependent decisions together.

Group together decisions that repeat. For example, if you need to describe
multiple types of a particular device, the engineer may make similar
decisions for each type. You can group these decisions to create a single
concept as a focus for decisions.

Group together decisions if they are derived either from a corresponding
single variability assumption or from separate assumptions that were
grouped in the Domain Definition. A single assumption that motivates
several decisions often represents a single concept, while assumption
groupings often suggest how domain experts organize their thoughts about
such systems.

" The principles of database schema normalization form a valid model for
this step. As is the case with normalization, the goal here is to identify and
organize a set of concepts without redundancy or inconsistency.

"* Define explicit logical connections between the decision groups. These

define the relationships between the decision groups.

Step: Identify Decision Constraints

Action Define structural and dependency constraints that limit how decisions are
resolved.

Input Decision groups

Remut Decision Model

Opp-58

DE2.2.1. Dedsien Model Msv

Heurisis 0 Define a structural constraint for each decision group; specify limits on
when the group can validly occur in an Application Model.

" Define a dependency constraint whenever one decision narrows the
resolution that the application engineer can provide for another decision.

" You may sometimes create decision groups where the cross-product of the
decision specifications implies family members that do not exist. You
should examine existing work products and specify constraints that omit
these members from the Decision Model.

3.2 RISK MANAGEMENT

Risk The Decision Model is inadequate for descriptions of existing application

engineering work products.

Implication The domain will not provide effective support for the targeted project.

Mitigation Try to describe one or more existing work products in terms of the Decision
Model. Review these descriptions with experienced engineers from the
targeted project to identify erroneous assumptions or unacceptable
limitations.

Risk The decision space is too large or complex.

implication Effort required to develop the Decision Model and subsequent adaptable
work products will exceed a reasonable level.

Mitigation Focus on a set of well-understood decisions and make the assumption,
explicitly, that the other decisions have fixed values (i.e., temporarily
constrain them to be commonalities). Plan to relax these assumptions in
subsequent iterations, or, in extreme cases, suggest that the Domain
Definition Activity consider narrowing the domain scope.

"* Reorganize the decision space to achieve a more effective separation of
concerns.

"* Introduce an indexing scheme into the decision groups (or use a more
sophisticated one).

4. INTERACTIONS WITH OTHER ACTIVITIES

4.1 FEEDBACK TO INFORMATION SOURCES

Contingency The Domain Definition is incomplete, ambiguous, or inconsistent.

Source Domain Definition Activity

Response Describe the inadequacies in the Domain Definition and suggest appropriate
refinements. Proceed with Decision Model, and document any assumptions
made regarding the inadequate portions of the Domain Definition.

Opp-59

D&RU.. Dod= sM•ddAda

Contingency The Domain Plan cannot be satisfied with available technical capabilities.

Source Domain Management Activity

esWponse Propose (alternative) revisions to the Domain Plan that better match available
capabilities. Complete a Decision Model that satisfies the Domain Plan as
closely as possible.

Contingeny The practices and procedures specified in the Domain Plan are either
ineffective or inefficient.

Source Domain Management Activity

Response Describe the ways in which the practices and procedures are either ineffective
or inefficient. Propose revisions to the practices and procedures to make them
more effective.

4.2 FEEBACK FROM PRODUCI CONSUMERS

Contingency The Decision Model is incomplete, ambiguous, or inconsistent.

Source * Product Requirements Activity

"* Process Requirements Activity

"* Product Design Activity

"* Product Implementation Activity

Response Refine the Decision Model to correct inadequacies.

OPOO

DE.2.2.2. PRODUCT REQUIREMENTS ACTIVITY

1. GETTING STARTED

The Product Requirements Activity is an activity of the Domain Specification Activity for creating
Product Requirements. A requirements specification describes needs that are satisfied by creating a
work product. Similarly, Product Requirements is a requirements specification that is adaptable to
the decisions supported by the work product family's Decision Model. The Product Requirements de-
scribes the set of problems solved by the members of a work product family. By applying the decisions
that characterize a particular work product (i.e., its Application Model) to the Product Requirements,
a standardized description of that work product is produced. A Product Requirements gives meaning
to an Application Model as a description of a member of a work product family. The Product
Requirements Activity is performed for each work product family in the domain.

1.1 OBJECrn,

The objective of the Product Requirements Activity is to define the requirements for a work product
family described in Process Requirements. The specification must be adaptable to decisions allowed by
the work product family's Decision Model.

1.2 REQuIEm INFORMATION

The Product Requirements Activity requires the following information:

0 Domain Definition

* Decision Model

1.3 REQuIE KNoWLEGE mD ExPERmCE

The Product Requirements Activity requires domain and software knowledge and experience in:

"* The nature, purpose, and use of work products for existing applications

"• The issues that application engineers must resolve in creating work products in the domain

"* The principles and use of an appropriate specification method (e.g., informal, structured,
semi-formal, or formal)

2. PRODUCT DESCRIPTION

Name Product Requirements

oppsl

VLU= hadu Requkm~a !MI

F, pWm Product Requirements specify the requirements of members ofa workproduct
family. Product Requirements also define the meaning of an Application
Model created in accordance with the corresponding work product family's
Decision Model. You can use the Product Requirements to understand (and
explain to application engineers) the implications of decisions in an
Application Model (which descnibes the problem solved by a work product).

Content The Product Requirements is an adaptable requirements specification for a
work product family. A specification contains four types of information:

* Concept. An overall characterization of purpose and objectives.

* Context. A characterization of the relevant environment and
relationships within it.

0 Content. A characterization of the expressed or contained substance,
meaning or behavior, and scope.

* Constrains. A characterization of limits and demands on context of use
or content.

As a whole, this information is sufficient to characterize each particular
member of a work product family as implied by the decisions allowed by the
family's Decision Model.

Form and Product Requirements may be expressed in any well-defined form, for
Structure example:

"* Structured, informal text

"• Assertions

"* A formal or semi-formal specification

The assertions form of Product Requirements is a set of assertions that
describe the (black-box) meaning of work products in the domain. Assertions
may be simple or parameterized to reflect decisions defined in the Decision
Model. Assertions can be structured into a hierarchy to facilitate separation
of concerns.

Appropriate formal or semi-formal notations depend on the domain being
analyzed, the application engineering work products mandated by Process
Requirements, and the existing work products available for analysis. For
example, when writing the Product Requirements for a family of code, you
might want to represent the Product Requirements using a package interface
specification like that of Booch (1987). To define behavior precisely, you might
choose a semi-formal method as described in Heninger (1980).

For all forms, parameterization can be used to express the effects of decisions
on Product Requirements. A metaprogramming notation can describe text

Opp-62

DE..2Z Produc Raquremmna Alivil

substitution, conditional inclusion, and iteration over repetitive dcisons
Example DE.22.2-1 illustrates a fragment of a Product Requirements for a
DOD-STD-2167A System/Segment Specification document work product family
of the TLC domain. This fragment depicts a portion of the concept (eg., the
objectives) and content (e.g., topics) covered in this document. This fragment also
depicts the use of parameterization (in terms of appropriate decisions from the
work product family's Decision Model shown in Example DE221-1) to express
requirements that characterize particular members of the work product family.
For example, the block of text desnibing the pedestrian lane push-button device
topic is only included in the Product Requirements when there is at least one
Street in the TLC system which has that device.

1. Overview

The objectives of a System/Segment Specification (SSS) within the TLC domain are as follows:

"* The SSS specifies the requirements for a system or a segment of a system within the domain.

"* The SSS provides a general overview of the TLC system or segment.

2. Key Topics and/or Functions

The basic requirements for an SSS are stated in the DID DI-CMAN-80008A. The members of the SSS work product
family of the TLC domain vary from or interpret this specification as indicated below.

<if there is least one Street S that has S.Pedestrlan Lane.PushButtonMechanism = yes then>
The SSS shall identify the push-button device as an external to which the TLC system must interface. It shall define in
detail the specific interface to the push button from the TLC system based upon the
<TLCSSS.HWPlatform.Interface> interface.
<endif>

<If Tl SSS HW Platform.Platform Is TLCI then>
The SSS shall contain the subparagraph titled Toxic products and fomudatons (numbered 3.3.1.1) specifying the
requirements for the control of the toxic products used in the manufacture of the <Platform> platforms.
<endif>

<IfTLCSSS.HW Platform.Platform Is TLC2 or TLC3 then>
The SSS shall omit the subparagraph titled Toxicproducts andfomndadons (numbered 33.1.1) with the statement 'i
subparagraph is not applicable to this system."
<endif>

Example DE.2.2.2-1. Fragment of TLC Product Requirements for the System/Segment Specification Work Product Family

Opp.63

S• All implicit requirements must be an elaboration of one or awre
Qta commonality assumptions.

" The Product Requirements must elaborate all commonality assumptions
that are applicable to the work product family.

"If decisions that characterize a particular work product are applied to the
Product Requirements, the result should be a correct description of that
work product.

" One adaptation of the Product Requirements must describe a work
product that is relevant to the targeted project.

3. PROCESS DESCRIPTION

The Product Requirements Activity consists of four steps shown in Figure DE.2.2.2-1.

Donwn Decsio
DefinDitioIn Model

Define the Desbe Derive the Cdentep
e *t content CoanDsntrtaio

Product
Requienments

to
Prdei Dsion Prode lmpmio,

Domain Vvijcatio

Figure DE22.2-1. Product Requirements Process

3.1 OpocwuR

Follow these steps for the Product Requirements Activity.

Step: Define the Concept

Aedon Describe overall purpose and objectives for the work product family.

Input 0 Domain Definition

0 Decision Model

Rea&l Product Requirements: Contept

Opp-44

H i Select a requirements method that best supports an abstract description
of the work product family. For documents, a brief textual description may
suffice.

* Describe the work product's objectives and provide an overview of its
content.

* Examine commonality assumptions to identify additional aspects of
concepts that apply to all members of the work product family.

Examine variability assumptions to derive additional aspects of concepts
that distinguish particular members of the work product family. Capture
these requirements by parameterizing concept descriptions in terms of the
appropriate decisions from the work product family's Decision Model.

Examine Legacy Products from the Domain Definition to derive
additional concept requirements that apply to all or some members of the
work product family. Describe variations in concepts in terms of decisions
in the work product family's Decision Model. If no such decisions exist,
then decide whether you want to extend the Decision Model to
accommodate these requirements variations.

Step: Describe the Context

Acion Describe the relevant environment and relationships for the work product
family.

I4pWt • Domain Definition

* Decision Model

M Product Requirements: Context

Hewiskis • Describe the work product's audience, its expected benefits, and its
relation to other work products.

"• Examine commonality assumptions to derive additional context
requirements that apply to all members of the work product family.

"* Examine variability assumptions to derive additional context
requirements that characterize a particular member of the work product
family. Capture these requirements by parameterizing context descrip-
tions in terms of the appropriate decisions from the work product family's
Decision Model.

" Examine Legacy Products to derive additional context requirements that
apply to all or some members of the work product family. Describe varia-
tions in context in terms of decisions in the work product family's Decision
Model. If no such decisions exist, then decide whether you want to extend
the Decision Model to accommodate these requirements variations.

OPW,

Sto Deive trM CmtIe

A m Diescribe the subject matter covered in the work product family.

hys • Domain Definition

* Decision Model

A Product Requirements: Content

Hea •a 0 Describe the topics covered by the work product.

"• Examine commonality assumptions to derive requirements that apply to
all members of the work product family.

"* Examine variability assumptions to derive additional requirements that
characterize particular members of the work product family. Capture
these requirements in the Product Requirements by parameterizing con-
tent descriptions in terms of the appropriate decisions from the work
product family's Decision Model.

• Examine Legacy Products of the Domain Definition to identify and extract
additional common and varying requirements for content. Describe varia-
tions in content in terms of decisions in the work product family's Decision
Model. If no such decisions exist, then decide whether you want to extend
the Decision Model to accommodate these requirements variations.

Step: Identify Constraints

Acdon Describe limits and demands on members of the work product family.

S•t Domain Definition

* Decision Model

AM* Product Requirements: Constraints

Hawiud • Describe any formatting guidelines or other restrictions on the work
producL

"• Examine commonality assumptions to derive additional constraints that
apply to all members of the work product family.

"* Examine variability assumptions to derive additional constraints that
characterize particular members of the work product family. Capture
these requirements by parameterizing constraint descriptions in terms of
the appropriate decisions from the work product family's Decision Model.

"* Examine Legacy Products to derive additional constraints that apply to all
or some members of the work product family. Describe variations in

0PP-

constraints in terms of decisions in the work product famly's Decision
Model. If no such decisions exist, then decide whether you want to extend
the Decision Model to aonmmodate these requirements variations.

3.2 RISK MANAGEM r

Rik Product Requirements do not capture all Domain Assumptions accurately.

/mplicaton A derived requirements specification will not accurately describe the problem
that the corresponding work product family member solves.

M'tigain Create an Application Model for one or more existing work products and
derive their respective requirements specifications. Review the specification
with customers, experienced engineers, and domain experts to identify any
inaccuracies.

4. INTERACTIONS WITH OTHER ACTIVITIES

4.1 FFUWACK TO INFORMAoON SOURCES

Condngency The Domain Definition is incomplete, ambiguous, or inconsistent.

Source Domain Definition Activity

Respome Describe the inadequacies in the Domain Definition. Proceed with Product
Requirements, and document any assumptions made regarding the
inadequate portions of the Domain Definition.

Condngency The Domain Plan cannot be satisfied with available technical capabilities.

Source Domain Management Activity

Response Propose (alternative) revisions to the Domain Plan that better match available
capabilities. Complete Product Requirements that satisfy the Domain Plan as
closely as possible.

Condiency The practices and procedures specified in the Domain Plan are either
ineffective or inefficient.

Soure Domain Management Activity

Rqponse Describe the ways in which the practices and procedures are either ineffective
or inefficient. Propose revisions to the practices and procedures that will make
them more effective.

ContIncy The Decision Model is incomplete, ambiguous, or uconsistent.

Source Decision Model Activity

Rapne Describe the inadequacies in the Decision Model. Proceed with Product
Requirements, and document any assumptions made regarding the
inadequate portions of the Decision Model.

ON47

U1 FEUDACK FROM PRowUCr Co4uum

CeAn meiapy Product Requirements fail to descibe a work product family that is consistent
with the Domain Definition.

Somre Domain Management Activity

PipAse Modify the Product Requirements to be consistent with the Domain
Definition.

Ctulingleuu Product Requirements are incomplete, ambiguous, or inconsistent.

Swure 0 Product Design Activity

0 Product Implementation Activity

hsPOAse Refine the Product Requirements to correct inadequacies.

DE.2.2.3. PROCESS REQUIREMENTS ACTIVITY

1. GETTING STARTED

The Process Requirements Activity is an activity of the Domain Specification Activity for creating
Process Requirements. Process Requirements is a description of the Application Engineering process
currently in use by projects in your organization (including the targeted project). The description of
the process identifies the activities, work products, and common methods or practices used by those
projects to produce software work products. In the Process Requirements Activity, you determine
which types of work products are produced, what steps engineers take to produce them, and how those
steps can be modified to allow for reuse.

In an opportunistic Synthesis process such as this one, the goal of the Process Requirements Activity
is primarily to document the actual process in use by targeted projects. Any changes to that process
intended to facilitate reuse are minimized, with an ideal of not changing major activities, relationships,
or work products. Changes are limited to the way in which individual work products are produced, with
the intent of aiding the efficient discovery and exploitation of opportunities for cost-effective reuse.

1.1 OBJEC-IVM

The objective of the Process Requirements Activity is to characterize the prevalent Application
Engineering process used by projects in a domain and the work products that result. It is assumed that
the targeted project will follow a similar process and produce work products of the same types. Based
on that characterization, the Process Requirements Activity identifies which work products the
targeted project can likely produce more easily if reusable assets are available.

1.2 REQuIR INmORMArnON

The Process Requirements Activity requires the Domain Definition.

1.3 REQuIE KNOwLEGE AND Expnm• c

The Process Requirements Activity requires domain and software knowledge and experience in:

"* The conventional life-cycle process of systems in the domain and the role of customers and
standards in that process

"* How each of the work products of Application Engineering is produced currently and how it
would be produced if reuse were a viable option

2. PRODUCT DESCRIPTION

Name Process Requirements

PuPOs Process Requirements are an analysis of the current Application Engineering
process that identifies work products which provide a focus for reus efforts.
The process described in the Process Requirements may be manual or may
incorporate varying levels of automation.

ContW The Process Requirements work product consists of:

" Proces Speckadon-. A definition of the work products, activities, and
contributing methods or practices that application engineers currently
use. For each activity, Process Specification describes its purpose, the
work products created, and interactions with other activities.

" Work Product Cr*aon Procedue. A description of how application
engineers produce a work product either with or without reuse.

Form and A Process Specification can be described informally or using a process
Structure modeling notation. The form and content of each work product should be

described explicitly or by reference to customer or industry standards. Section
AE provides an example of how a Work Product Creation Procedure might be
described.

Veriation The described Application Engineering process should accurately account for
Criteria current work products and practices of application engineering projects.

3. PROCESS DESCRIPTION

The Process Requirements Activity consists of two steps shown in Figure DE.2.2.3-1.

3.1 PNocEDUR

Follow these steps for the Process Requirements Activity.

Step: Describe the Application Engineering Process

Action Describe the process that application engineering projects follow to create an
application product and its constituent work products.

Input Domain Definition

Rem& Process Specification

Heurisics • Identify the deliverables that the Application Engineering process pro-
duces. This set of work products is determined by the needs of customers
for the targeted project. The form and content of some work products may
be based on corporate, customer, or industry standards, as appropriate.
Work products that must satisfy a form and content standard are more
likely to offer opporunities for reuse.

Identify additional (i.e., intermediate or auxiliary) work products that
result from the Application Engineering process. These work products

Opp-7O

Doms~

P mFmulate a Procrdureafir

Cr*at= Of V~b Productsl

Figur DE.a2-I. Process Rair ts No

retain preliminar or supporting infrmatio or support ;wrdjc and process
management, firludin risk management and quatitative and qualitative
analyses of deliverable work products and of the production process.

Step: Formulate a Procedure for Reuse-Based Creation of Work Products

Action Formulate a procedure that will serve as an informal guide for application
engineers to create a work product, allowing for discovery and exploitation of
supported reuse opportunities as appropriate.

11put Process Specification

Rewit Work Product Creation Procedure

HCAu4.k"s * Start with an approximate description of the steps of work productcreation as application ngine*r currently work Section AE provides an

examplie of such a work product creation procedure- Anywork product can
be created, with or without reuse, roughly following that procedure.

0Consider how your work product creation procedure will be affected by the
availability of relevnt reusable assets. Provide guidance on how reuse
should affect the way activities are performed. Consider the guidance
given for the procedure in Section AE as a starting point.

oM71

3.2 Rm MANGEMw ErT

Risk The documented Application Engineering process does not match actual
practices.

Implication Subsequently developed work product families will not support the creation
of work products that projects need to produce.

Mitigation Review the process with experienced project managers and engineers to
ensure that it encompasses all activities required of a project, those work
products that customers require, and those additional work products that
benefit a project. Variations in project needs must be anticipated and
supported.

4. INTERACTIONS WITH OTHER ACTIVITIES

4.1 FEEDBACK TO INFORMATION SOURCES

Contingency The Domain Definition conflicts with the Domain Plan or is incomplete,

ambiguous, or inconsistent.

Source • Domain Definition Activity

* Domain Management Activity

Response Describe the inadequacies in the Domain Definition (e~g., a targeted project
whose needs seem to conflict with the domain scope). Proceed with Process
Requirements, and document any assumptions made regarding the inadequate
portions of the Domain Definition.

Contingency The practices and procedures specified in the Domain Plan are either
ineffective or inefficient.

Source Domain Management Activity

Response Describe the ways in which the practices and procedures are either ineffective
or inefficient. Propose revisions to the practices and procedures to make them
more effective.

4.2 FEREDBAcK FROM PRoDucr CONSUMES

Contingency The Process Requirements are incomplete, ambiguous, or inconsistent.

Source Process Support Development Activity

Response Refine the Process Requirements to correct inadequacies.

Contingency The documented Application Engineering process identifies types of work
products that do not correspond to the needs of a particular project.

Opp-72

DE 21 .. Prooes RaquirceUast Alihit

Source Project Support Activity

Response Include in the Process Requirements any activities and associated work
products that offer an opportunity for reuse but have not been identified as
such previously. Omit any that no longer correspond to accepted practice.

Opp-73

77m page itentionally kft blank

Opp-74

DE.2.2.4. PRODUCT DESIGN ACTIVITY

1. GETTING STARTED

The Product Design Activity is an activity of the Domain Specification Activity for creating a Product
Design. A Product Design specifies the design for work product family, rather than for a single work
product. A design describes a work product that solves a specified problem. Similarly, a Product De-
sign is a design that varies according to the decisions supported by the work product family's Decision
Model. By applying the decisions that characterize a particular work product to the Product Design,
a standardized design of that work product is produced. The Product Design Activity is performed for
each work product family in the domain.

1.1 OJECnVEs

The objective of the Product Design Activity is to create a design for a work product family. The work
product family's design must satisfy its Product Requirements and must be adaptable to the decisions
allowed by the family's Decision Model.

1.2 REQ•UiR INFORmATiON

The Product Design Activity requires the following information:

"* Decision Model

"* Product Requirements

"* Legacy Products

1.3 REQUIRED KNOwLEDGE AND EXPERIENCE

The Product Design Activity requires domain and software knowledge and experience in:

"* The principles and use of appropriate design method(s) used to construct existing work
products in the domain

"* How artifacts that represent domain knowledge (e.g., code, documentation, test plans) are
designed, including an appreciation of typical engineering tradeoffs to be resolved

"* The concepts and practice of abstraction-based reuse (Parnas 1976; Campbell 1989)

2. PRODUCT DESCRIPTION

Name Product Design

Opp75

Pupose A Product Design specifics the design of members of a work product family.

Content The Product Design consists of the following parts for each work product
family:

" Product Ar•hftecaw. A (possibly partial) specification of the internal
organization of each application engineering work product that can be
produced for the family (see Section DE.2.2.4.1).

" Component Design. A specification of the design of a set of Adaptable
Components that can be adapted to compose draft application engi-
neering work products useful for the targeted project (see Section
DE.2.2.4.2).

" Generation Design. A specification of how a work product family's
Application Model is used to select, adapt, and compose Adaptable
Components to create work products that satisfy the Product
Requirements and Product Architecture (see Section DE.2.2.4.3).

Veirication 0 All aspects of Product Requirements for a work product family are
Criteia traceable into the Product Design for that family. All variations in Product

Requirements for a work product family have equivalent variations in the
Product Design.

• The Product Design satisfies the verification criteria appropriate to the
specific design method used in creating it.

3. PROCESS DESCRIPTION

The Product Design Activity consists of the three steps shown in Figure DE.2.2.4-1.

3.1 PROCEDURE

Follow these steps for the Product Design Activity.

Step: Product Architecture Activity

Action Create design structures that characterize the internal organization of
members of the work product family.

Input • Product Requirements

• Legacy Products

Resut Product Architecture

Hewisafi Create multiple design structures (each portraying a different
perspective) for a given work product family.

* Ensure that the work product family's Product Architecture applies to all
members of that family.

Opp.76

DL2U~fa*MDVA -

D ad

2 Aciviies repeaterdtfr eah ý

work pfhwodfedt

3 A se of CoponentDesig

Feaigur De.241 routDW ~ rcs

Step: omponnt Desgn Acivit

ActionCreate aromponet Desigon, foar each ofa et f daptalomoetsta

I w compos ork p d ail aidfiA

Inpt M wor produd u*tRqieet

wor product Arhiecr

FiLgacy Prducts-.Prdc Dmp r

Step.- Component Design Atvt

Ac EnsCreatea eah Component Design fo sachisfiesreleatatet of Adptbl Copronentsta

Ahitu a Product Requirements

Arhtr a

* a7

Ste:• Gmeratim Desp Aedvity

Acs* Specify a precise procedure of bow members of a work product family are
derived from Adaptable Components based on the decisions in an Application
Model.

Input • Decision Model

"* Product Architecture

"• Component Designs

Result Generation Design

Heurias * Decide how the decisions for a work product family determine the form
and content of an initial draft of an application engineering work product.

* Specify the design by describing how Adaptable Components are selected,
adapted, and composed according to the decisions in the product family's
Decision Model.

32 RISK MANAGEMENT

None

4. INTERACTIONS WITH OTHER ACTIVITIES

4.1 FEmBAcK TO INFORMAON Sources

Contingency The Decision Model for work product family is incomplete, ambiguous, or

inconsistent.

Source Decision Model Activity

Response Describe the inadequacies in the Decision Model. Proceed with Product
Design, and document any assumptions made regarding the inadequate
portions of the Decision Model.

Condngency The Product Requirements for a work product family are incomplete,

ambiguous, or inconsistent.

source Product Requirements Activity

pRaponse Describe the inadequacies in the Product Requirements. Proceed with
Product Design, and document any assumptions made regarding the
inadequate portions of the Product Requirements.

Condtngey The Domain Plan cannot be satisfied with available technical capabilities.

Sourc•e Domain Management Activity

Opp.78

D9122A. hNac Dulp #0Isy

M Propose (alternative) revisions to the Domain Plan that better match available
capabilities. Complete a Product Design that satisfies the Domain Plan as
losely as possible.

Consiveuy The practices and procedures specified in the Domain Plan are either
ineffective or inefficient.

Soarce Domain Management Activity

AWOxem Describe the ways in which the practices and procedures are either ineffective
or inefficient. Propose revisions to the practices and procedures to make them
more effective.

4.2 F]•D)AcK FROM PRoDUCr CONSUMERS

Condmaecy Suggestions are made for Product Design changes to exploit unforeseen
opportunities, e.g., a situation where substantial software is made available for
use in the Domain Implementation that was not available when the Domain
Specification was completed.

Source • Product Implementation Activity

* Process Support Development Activity

Responme Revise the Product Design.

* Refer to Domain Management for future planning.

o Reject the changes due to conflicts with the Domain Definition.

Condigency The Product Design for a work product family does not satisfy the Product
Requirements.

Source Domain Verification Activity

Rkspone Modify the Product Design to be consistent with the Product Requirements.

Conti, ency The Product Design for a work product family is incomplete, ambiguous, or
inconsistent.

Source Product Implementation Activity

Rapome Refine the Product Design to correct inadequacies.

oW-79

Mh pop bamdmnaiy left bmak

DE.2.2.4.1. PRODUCT ARCHITECTURE ACTIVITY

1. GETrING STARTED

The Product Architecture Activity is an activity of the Product Design Activity for creating a Product
Architecture. This activity is performed for each work product family in the domain. An architecture,
for a given work product, is one or more design structures that define the internal organization of that
work product from different perspectives. Similarly, a Product Architecture is a description of the in-
ternal organization of a work product family. A Product Architecture includes the architecture of each
of the work product families that make up the product fanily.A Product Architecture varies according
to the decisions supported by the work product family's Decision Model. A Product Architecture de-
scribes a standardized architecture for all members of a work product family in a domain. By applying
the decisions that characterize a particular work product to the Product Architecture, a standardized
architecture of that work product is produced.

For each work product family (requirements, design, code, etc.), one design structure must identify
a set of Adaptable Components. Application engineers compose instances of these components to
create a draft work product. Depending on which design method domain engineer's follow, they may
also create other structures which provide other views of the behavior or interrelationships of compo-
nents. In all cases, the structures are in an adaptable form so that Application Engineering can use
them to produce any member of the indicated product family.

1.1 OJECrVES

The objective of the Product Architecture Activity is to define an adaptable architecture for a specific
work product family. Product Architecture is the design of solutions to the problems that Product
Requirements describe.

Application engineers create work products by selecting, adapting, and composing instances of
Adaptable Components that Domain Engineering produces. During Product Architecture, domain
engineers identify the structure of each application engineering work product family in terms of
components that application engineer's may produce manually or from Adaptable Components.

1.2 REQUMED IMPORMAM N

The Product Architecture Activity requires the following information:

"* Product Requirements

"* Legacy Products

1.3 R tumED KNow~zDxz AmD Expru

The Product Architecture Activity requires domain and software knowledge and experience in:

op 4 1

7C1' ~ ' T-'19FT-7 - F -W C7

" The principles and use ofthedesig method used tocreate members of the work pmdm• hb y
(e.g., ADARIS [Software Productivity Consortium 199"D

" How systems in the domain are designed and documented following chosen design and
documentation methods

"• The concepts and practice of metaprogramming (Campbell 1989)

7. PRODUCT DESCRIPTION

Name Product Architecture

Purpm The Product Architecture describes the internal organization of members of
the application engineering work product family.

COne The Product Architemur consists of desipn stnwures for the appliation work
product fanmy. One of the structures must identify the components that make up
each of the members of the work product family. Each structure consists oe

"* A set of design elements

"* A relation that associates elements

For example, a software requirements specification document is one type of
application engineering work product. The domain engineers might choose
sections of requirements documents as design elements, and "subsection" as
the relation among these elements. This describes the structure of a software
requirements specification document in enough detail to allow its composition
from its constituent elements. The structures developed for a particular
domain depend on the particular application work products and the design
method used to produce them.

Although the Product Architecture for a particular work product may contain
multiple design structures, there must be one structure that describes the
decomposition of the work product into work assignments (e.g., modules,
sections). The elements of this structure correspond to components that are
to be implemented by Adaptable Components.

The only difference between the design structures specified in the Product
Architecture and those specified in a conventional design is that the Product
Architecture is parameterized and adaptable, so that it desuibes the family of work
products in the domain.

Fonn and The form for each structure of a Product Architecture is a textual or graphic
SO•uctu network of elements and relations. This representation is then augmented

with a suitable technology such as metaprogramming notation to parameterize
the structure for adaptation to variations.

Example DE.2.2.4.1-1 illustrates a fragment of a Product Architecture for a
DOD-STD-2167A System/Segment Specification document work product
fnly ofthe TLC domain. h Product Architemu of this docmnent work product
family is cqxased as an anwuatd outine where each numbered heading (eg, 1.

Opp42

DE.2.24.1. Product Ardiiuctum AcMiy

Scope) correspomds to a secon of the wrk produt Precedn ft annotated
outline are the dedsios (e•g, AR• .pedesuianjlaes) that parameterbr. ft
annotated outline. The content of the annotated outline will vary depending on
values chosen for these dedsion For ecample, the contew of Section 321..1.j varies
for some family members. In oer family members, dtis secti is omitted.

Instantiation Panameters
ARCR..pedestrianaes one of (yes, no) {A value of yes means that the Systemegment Specification

must include requirements for a pedestrian lane without push
buttons. A no value means the SSS must omit these
requiements.)

ARCH_pedestrianlanes_pb one of (yes, no) (A value of yes means that the System/Segment Specification
must include requirements for a pedestrian lane with push
buttons. A no value means the SSS must omit these
requirements.)

Instantiation Constraints

None

System/Segment Specification Product Architecture (Annotated Outline)

I. Scope

1.1 Identification

The approved identification number, title, and abbreviation of the TLC system.

1.2 System Overview

-i.fArch.pedestrlan.lanes = yes then>
3.2.1.1.1.j PedestrianLanes

The purpose of the Pedestrian lanes is to allow the safe crossing of the intersection by pedestrians. This capability,
Pedestrian lanes (TLC-PL), presents the functionality of the walk-don't walk indicators associated with the pedestrian
lanes of an intersection.
<endLf>

<If Arch.jpedestranlanespb = yes then>
3.2.1.1.1.j PedestrianLanesn WithPushButtom

The purpose ofthe Pedestrian laneswith push buttons isto allow pedestriansto safely cros an intersection. Thiscapability,
Pedestrian lanes with push buttons (I`C-PB), presents the functionality of the walk-don't walk indicators and the push
buttons associated with the pedestrian lanes of an intersection.
<endif>

Example DE.2..4.1-1. Fragment of TLC Product Architecture for the System/Segment Work Product Family

opp8 3

DB*'241, m1 heAMmstfts

I Jb ,.1 Each Product Architecture structure satisfies the verification citeria
OWn estblised by the specia& .esign method used in its creation.

* The Product Architecture defines all structures for the software and other
work products required by the Application Engineering process.

3. PROCESS DESCRIPTION

The Product Architecture Activity consists of two steps shown in Figure DE.2.24.1-1.

ProdctsR oduc

* I-- - - - - -- - - - - - -- - - -I- - -

toComponent Design, Geneyation Desgn, ProductImplementation, and

Domain Venficaon
1 One work product component

per work product family

2 Activities repeated for each
work product family

Figure DE.2.2.4.1-1. Product Architecture Process

3.1 PNOCulEDe

These steps are performed for the Product Architecture Activity.

Step: Identify Work Product Components

Action Develop a structure that describes, as a structured set of components, the
internal organization of the work products in the family.

Input e Product Requirements

w Legacy Products

RFsu/t Product Architecture: Internal Organization

HeupIstics W Examine Legacy Products for components and structural relationships. A
work product usually contains structures that intuitively identify

Opp-44

DL2.Z4.1. Prodva ArdMeur Acdvity

components. A calling hierarchy is an example for code. In documents, con-
sider basing the structure around the table of contents, especially if a stan-
dard format exists in the domain (see the following heuristic).

"Let the design methods used in the Legacy Products guide you. For
example, systems developed using ADARTS include an information hid-
ing hierarchy. Systems developed using structured design have a functional
decomposition. Documents developed using DOD-STD-2167A have a
predefined section organization.

" The structures that result from Product Architecture establish a de facto
standard in your organization if none already exists. You should, therefore,
try to use standard organizational formats in the domain, such as those
defined by ADARTS or DOD-STD-2167A. Incorporate any formats that
are relevant to the targeted project.

" The decisions that parameterize a structure are related to the Decision
Model for the work product family of which the Product Architecture
forms a solution. However, the Decision Model describes the problem
space of the work product family, whereas the Product Architecture is
associated with the solution space of that family. To reflect this difference,
you may want to create parameters that are not in the Decision Model.
During the Generation Design Activity, you will map these parameters to
decisions in the Decision Model.

" One motivation for creating a Product Architecture is to break down a
work product into a set of components on which subsequent Domain Engi-
neering activities (Component Design, Component Implementation,
Generation Design) can be performed independently. If the packaging of
Legacy Products does not conform to the internal organization, create one
that does.

Step: Develop Other Structures

Action Create any other structures required to define the Product Architecture fully.

Input * Product Requirements

* Legacy Products

Reumt Product Architecture: Alternate Structures

Hewistc * The chosen design method for software identifies other required design
structures. Using ADARTS, these design structures are the Process
Structure and the Dependency Structure. Hypertext-based documents
would have an analogous alternative structure.

* Alternate structures impose constraints on the implementation of each
component of the internal organization. The design method characterizes
these constraints.

op,- 5

Each structure must support a subset of the same variations. The internal
organization deternines how these variations affect each component.
Component variations must account properly br variations in relevant
parts of the alternate structures.

3.2 RISK MANAGEME•T

isk The Product Architecture will not support all features or variations in Product
Requirements.

Implication The Product Architecture is not a correct solution to the Product
Requirements.

Mitigation Review the Product Architecture with developers of the Product
Requirements and experienced designers. Establish traceability of all
required features to elements of the architecture. Evaluate whether variations
that characterize different work products lead to proper architectural
variations.

4. INTERACTIONS WITH OTHER ACTIVITIES

4.1 FEEDBACK TO INORSMATION SOURCES

Contingency The Product Requirements are incomplete, ambiguous, or inconsistent.

Source Product Requirements Activity

Response Describe the inadequacies in the Product Requirements. Proceed with
Product Architecture, and document any assumptions made regarding the
inadequate portions of the Product Requirements.

Contingency The Domain Plan cannot be satisfied with available technical capabilities.

Source Domain Management Activity

Response Propose (alternative) revisions to the Domain Plan that better match available
capabilities. Complete a Product Architecture that satisfies the Domain Plan
as closely as possible.

Contingency The practices and procedures specified in the Domain Plan are either

ineffective or inefficient.

Source Domain Management Activity

Response Describe the ways in which the practices and procedures are either ineffective
or inefficient. Propose revisions to the practices and procedures to make them
more effective.

4.2 FEEDBACK FROM PRODUCr CONSUMERS

Contidnency The Product Architecture does not satisfy the Product Requirements.

OpWW

DE2Z4.1. Pmdud AmbUMM A0Mh

Source Domain Verification Activity

Reponse Modify the Product Architecture to be consistent with the Product
Requirements.

Condngency The Product Architecture is incomplete, ambiguous, or inconsistent.

Source 0 Product Implementation Activity

"° Generation Design Activity

"* Component Design Activity

Response Refine the Product Architecture to correct inadequacies.

op" 7

Thsis pape intentional~y left blank

OPP88

DE.2.2.4.2. COMPONENT DESIGN ACTIVITY

1. GETTING STARTED

The Component Design Activity is an activity of the Product Design Activity for creating a Component
Design. The Product Architecture identifies a set of Adaptable Components that may be used to im-
plement a work product family. A Component Design is a design specification for one of these Adapt-
able Components. Application engineers, using the Generation Procedure, may adapt and compose
a set of these components to implement certain work products, or portions thereof. Each component
must be designed to satisfy relevant aspects of the Product Requirements and all design structures of
the Product Architecture.

1.1 OBje'rnVE.

The objective of the Component Design Activity is to produce a design for an Adaptable Component
that satisfies applicable Product Requirements in accordance with its role in the Product Architecture.

1.2 REQUIRED INFORMATON

The Component Design Activity requires the following information:

"* Product Requirements

"* Product Architecture

"* Legacy Products

1.3 REQUiRED KNOWLEDGE Am ExpEmRENC

The Component Design Activity requires domain and software knowledge and experience in:

"* How components of systems in the domain are designed

"• The principles and use of an appropriate design method

"* The concepts and practice of abstraction-based reuse (Parnas 1976; Campbell 1989)

2. PRODUCT DESCRIPTION

Name Component Design

O-9

DKU1A -opo Dulp Aby

P•M A Component Design is a specification for an Adaptable Component that can
be used to construct a draft application work product.

Content Each Component Design represents a family of components. A Component
Design consists of two parts:

" Adaptation Specfcation. The Adaptation Specification for an
Adaptable Component describes the ways that the component can be
tailored via a set of parameters. Each parameter has a name and type
to indicate its range of variations. Constraints identify invalid
combinations of parameter variations.

" Interface SpeadConh. The Interface Specification describes the
desired characteristics of the implementation of the component. The
exact content of the interface specification is particular to the compo-
nent type and the design method used. To describe the entire family,
the interface specification is parameterized with respect to the
variations in the Adaptation Specification.

Form and The Adaptation and Interface Specifications each include textual and tabular
Structure information. The form of an Adaptation Specification is the same for all types

of components and includes the following information:

"• Name. Name of the Adaptable Component.

"• Instantiation Parameters. Adaptation parameters for the component,
including the name, type, and description of each parameter.

" Instantiation Containts. Constraints on the instantiation of the
Adaptable Component (e.g., constraints on the legal combination of
parameter values).

The interface part of Adaptable Components is different for software and
documentation. The content of the software interface is specific to the design
method(s) used to create the members of the family. The following types of
information are examples: definitions of interface programs (names, parame-
ters, parameter types, returned values), definitions of exported types,
descriptions of the effects of interface programs, assumptions about the
environment in which the software is to be used.

The interface for a documentation component does not require the same type
of detailed information. It consists of a brief statement of the content of the
component. It should provide enough information to determine the
importance of selecting this component as part of a Generation Procedure.
Example DE.2.2.4.2-1 illustrates a fragment of a Component Design for a
DOD-STD-2167A System/Segment Specification work product family of the
TLC domain. This design corresponds to one of the adaptable components
identified in the Product Architecture shown in Example DE.2.2.4.1-1. The
Adaptation Specification defines the adaptation parameters for this adaptable

Opp.90

DE±2.L4J Compaaaai D=Vi AM

component. The Interface Specification is parameterized, where appropriate,
in terms of these adaptation parameters.

Cocponet Design - Pedestrian Lae with Push Buttom (MLC.PL.PB-1)

Aaptation Specification

Instantiation Parametas
CObe interfacs one of ((L-A. I.-B) (type of interface to the aldon't walkU light

indiators}

COUP blinkingjrate one of (.es no) {Ayes value means the pedestrian lane indicators
have a variable blinking rate capability. A ms value
means they donot)

Instantiation Constraints
None

Interface Specification

This component contains the functial requirements for the pedestrian lanes present at the miteection. An
the pedestrian lanes with push buttons at an intersection must satisfy these requirements. The indicators and
the push button associated with the pedestrian lanes of this intersection conform to the <COMPj aeraca>
standard.

<if COMP._blnklngLrate is yes then>
The variable blinking rate for the pedestrian lane indicators must be set by the system.
<endlf>

Euample DE.2.4.2-1. Fragment of TLC Component Design for the SystemrSegment Specification Work Product F%mily

Vermifcaon * The Component Design satisfies the verification criteria established bythe
Criteria specific design method(s) used for its creation.

"• The Component Design satisfies all structres of the Product Architecture for
the work product famiy.

" The value for each parameter in an Adaptation Specification either is
derivable from the Decision Model for the work product family or has a
fixed, default value for all instances of the component family.

3. PROCESS DESCRIPTION

The Component Design Activity consists of two steps shown in Figure DE.2.2.4.2-1.

3.1 Procedure

Follow these steps for the Component Design Activity. Domain engineers perform these steps for
each Adaptable Component defined in the internal organization of the Product Architecture.

opm-9

piiis e f r uc t

Requiremet Pr22..-• oduc~ts Design ectue

Ste: efne omonntAdaptation Specification'

Adaptationstanso ea obntos

•ProuStpecifyeCmponent

kmt opoen esg: dattinSpecification afcc

Aciiissprtdfr ea ifch ton bftwyou a mtteAatainSeiiain

StpeieCmoentAdpatione SpeciiatyiPonut odtrevrain.Cnetae

AciosIemntify thrathritanstaidsintions. thater paaeeienhdpales Compnet andwil
rec or rcnstrintsr worn leglrombintios. a edteievrain ae

Remk Componesnta Destign:dattions aSpwecifcaio

-pw2 I

inalisacsotedmi.1eecmoet aen asoitdvra
tin iete r o dptbe.Yums tl rvd an nefc

spcfctobtyuma mtteAatto Seicatin

Sxmn eayPout t eemn aitos Cnetateo

seatc ahrta ytciditntos oeeuls o a rwil

in oregne okpoutyumyne odfn varainbse

on sytci itntosa el

OM92

DE-2.L4ZCa-"wwo DMV Aay

" Determine necessary component adaptations by analyzing the Product
Requirements to see how the component must vary to satisfy relevant
requirements. In practice, you should try to use both approaches.

" Decisions that parameterize components must derive from, but need not
be, the decisions identified in the Decision Model. In general, there is a
many-to-many relationship between Decision Model decisions and Com-
ponent Design parameters. You may use whatever decisions most natural-
ly specify variations among members of the family defined by an
Adaptable Component.

Step: Specify Component Interface

Action Specify the requisite properties for the implementation of each component.

Input * Product Architecture

0 Component Design: Adaptation Specification

Result Component Design: Interface Specification

Heuristics The properties that you must specify depend on the type of component and the
design method used. Parameterize each component interface with the
decisions from the component's adaptation specification so that it describes
all instances of the component.

3.2 RISK MANAGEMENT

None

4. INTERACTIONS WITH OTHER ACTIVITIES

4.1 FEEDBACK TO INFORMATION SOURCES

Contingency The Product Requirements are incomplete, ambiguous, or inconsistent.

Source Product Requirements Activity

Response Describe the inadequacies in the Product Requirements. Proceed with
Component Design, and document any assumptions made regarding the
inadequate portions of the Product Requirements.

Contngency The Domain Plan cannot be satisfied with available technical capabilities.

Source Domain Management Activity

Response Propose (alternative) revisions to the Domain Plan that better match available
capabilities. Complete a Component Design that satisfies the Domain Plan as
closely as possible.

OpP"

CThe practices and procedtres specified in the Domain Plan are etber

ineffective or inefficient.

Source Domain Management Activity

Response Describe the ways in which the practices and procedures are either ineffective
or inefficient. Propose revisions to the practices and procedures to make them
more effective.

Coningency The Product Architecture is incomplete, ambiguous, or inconsistent.

Some Product Architecture Activity

R•ponse Describe the inadequacies in the Product Architecture. Proceed with
Component Design, and document any assumptions made regarding the
inadequate portions of the Product Architecture.

4.2 FEEDBAcK FROM PRoDucr CoNsuMERs

Con0gency Suggestions are made for Component Design changes to exploit unforeseen
opportunities. For example, a situation where substantial software is made
available for use in the Domain Implementation that was not available when
the Component Design was completed.

Source 0 Product Implementation Activity

• Process Support Development Activity

RAsponse 0 Revise the Component Design.

* Refer to Domain Management for future planning.

* Reject the changes due to conflicts with the Domain Definition.

Contingency The Component Design does not satisfy the Product Requirements.

Source Domain Verification Activity

Rksponwe Modify the Component Design to be consistent with the Product
Requirements.

Contingency The Component Design is incomplete, ambiguous, or inconsistent.

Source • Component Implementation Activity

* Generation Design Activity

Response Refine the Component Design to correct inadequacies.

opp.94

DE.2.2.4.3. GENERATION DESIGN ACTIVITY

1. GETIING STARTED

The Generation Design Activity is an activity of the Product Design Activity for creating a Generation
Design. A Generation Design is a specification of productim procedures that an application engineer uses
to produce draft application engineering work products. A Generation Design defines a transformation
(or mapping) from an Application Model to the equivalent applicaton engineering work products. For
each application engineering work product a Generation Design specifies how to select and adapt Adapt.
able Components according to decisions in an Application Model and to compose them according to the
internal organization of that work product in the Product Architecture. The Generation Design Activity
is performed for each work product specified by the Product Requirements.

1.1 OJECnIv

The objective of the Generation Design Activity is to produce a specification for the production
procedures that can be used to produce application engineering work products for a member of a work
product family through reuse of Adaptable Components. The specification establishes a correspon.
dence between an Application Model and equivalent domain engineering work products that implement
the intent of the model correctly.

1.2 RmUIRED INFORMATION

The Generation Design Activity requires the following information:

"* Decision Model

"* Product Architecture

"• Component Designs

1.3 REQunm KNOWLmEGE AmD EXPER C

The Generation Design Activity requires domain and software knowledge and experience in:

* How work products of systems in the domain are designed

• The principles and use of the design method used for the Product Architecture

I The concepts and practice of abstraction-based reuse (Parnas 1976; Campbell 1989)

OPpsP

2. PRODUCT DESCRIPTION

Nabe Generation Design

PtWpose A Generation Design is a specification for a production procedure for creating
draft application engineering work products.

COaUnt A Generation Design relates the decisions from the Decision Model to the
elements of a work product's internal organization defined in the Product
Architecture. A Generation Design consists of three mappings:

"AtmRbia-wMapping. The Architecture Mapping is a description of the
relation between decisions in the work product family's Decision Mod-
el and the decisions of the corresponding adaptable Product Architec-
ture. This mapping describes how values for the Product Architec-
ture's decisions are determined from values of decisions in the
Decision Model. As a result, the Architecture Mapping defines the in-
ternal organization of a work product that describes a member of the
work product family based on decisions in the Decision Model (i.e.,
from an Application Model).

" Component Mapping. A Component Mapping is a description of the
relation of each element of the organizational structure to an Adapt-
able Component that implements that element. This mapping defines
how each component of a work product is to be produced.

" Decision Mapping. A Decision Mapping is a description of the relation
between decisions in the work product family's Decision Model and
the instantiation parameters in the adaptation specification of a Com-
ponent Design for each work product component. This relation de-
scribes how values for the instantiation parameters are determined
from values of decisions in the work product family's Decision Model.

Form and There is a Generation Design for each supported work product. The
S&nwure Architecture Mapping is represented as a statement for each instantiation

parameter of the work product's Product Architecture. The statement
contains a pairing between an instantiation parameter and an expression. The
expression to determine the value to assign an instantiation parameter is
described in terms of decisions in the work product family's Decision Model.
The expression may involve iteration over a group of decisions or conditional
testing of one or more decisions.

The Decision Mapping representation is similar to the Architecture Mapping,
except that the instantiation parameters come from the adaptation
specification of the Component Design for the work product.

The Component Mapping is represented as a "use" statement. If the
expression bracketing the use statement is "lie, then the use statement
describes which Adaptable Component contains the needed implementation.

Opp96

DE.2.2.43. Geasrmiom Desip A.diy

The expression is usually described in terms of decisions in the work product
family's Decision Model. However, if the Adaptable Component is always
used, then an expression of Ikue is sufficient to describe this situation.

Example DE.2.2.4.3-1 illustrates a fragment of a Generation Design for a work
product family of the TLC domain. It depicts one way of representing the
expressions discussed for Architecture, Component, and Decision Mapping.
The decisions used the metaprogramming notation come directly from the
Decision Model shown in Example DE.2.2.1-1. The parameters on the
lefthand side of the "=" statements in the Architecture and Decision Mapping
come from Examples DE.2.2.4.1-1 and DE.2.2.4.2-1, respectively.

Architecture Mapping
ARCH.pedestrianjanes = <if there Is a Street S that has a PedestrianLane speciled

and S.Pedestrlan Lane.PushButton Mechanisms = no then>
yes
<else>
no
<endIf>

ARCH.pedestrian.lanesj.b = <If there Is a Street S that has a PedestrlanlAne specified
and S.PedestrlanLane.PushButton Mechanism yes then>

yes
<else>
no

<endif>

Component Mapping
Required topic PedestrianLanesWithPushButtons

<ifTLCSSS.HWPlatform.Platforw = TLC2 then>
use component "Pedestrian lanes with Push Buttons (TLC-PL-PB-1)"

<else>

use component "Pedestrian lanes with Push Buttons (TLC-PL-PB-2)"
<endif>

Decision Mapping
Pedestrian lanes with Push Buttons (TLC-PL-PB-1)

COMP-interface = <ifTLCSSS.HWPlatform.Jnterface = TL-A then>
TL-A
<else>
TL-B
<endlf>

Example D12.2.4.3-1. Fragment of TLC Generation Design for the System/Segment Specification Work Product Family

Opp-97

S• The Generation Design specifies mappinp that will produce application
Criteri work products which exhibit the internal organizaton specified in the

Product Architecture.

The Generation Design specifies mappings that produce application work
products which satisfy the Product Requirements (i.e., the mappings are
consistent with Product Requirements variation).

All variabilities allowed by decisions are properly represented as product
variations.

* The effects of variabilities among work products are mutually consistent
(i.e., all mappings are consistent).

3. PROCESS DESCRIPTION

The Generation Design Activity consists of two steps shown in Figure DE.2.2.4.3-1.

Product Decisin
GinModel Component Design9----P ----r---- -Iý

Define Work Component Define Component
Product Structure2 Map*I Adaptation 2

Action Archite hwteusonri e DDecion iodenfettesrutr ftewr

Opig'ppnS

GeSao Inpmntdnn

Daai Vafoa

On wokpoutSopnn

pe wokpoutfml

2 Aciiisrpetdfrec

3.1 ftoco

Stp Defne Work Product c truonent

work proprodfamt.

ow4.

DE122.4.I Oaauiia Des*p AdM~y

iJput • Decision Model

0 Product Architecture

Result Generation Design: Architecture and Component Mappings

Heuristics 0 It is sufficient to define the work product structure as a mapping from the
Decision Model to the internal organization of the Product Architecture
for the work product. The internal organization defines the components
that are required to implement the work product. This mapping deter-
mines which elements of the Product Architecture are implemented for a
particular Application Model.

" The Product Architecture determines (conditionally and iteratively) how
components of each work product are to be derived from Adaptable Com-
ponents (i.e., the component mapping is provided implicitly by the Product
Architecture). The Generation Design should not modify that mapping.

" Represent this mapping in metaprogramming notation associated with
components in the Product Architecture. The mapping is defined in terms
of decisions in the Decision Model and determines whether (one or more
of) the associated component(s) should be included in the product created
for a given Application Model. This mapping is formed by analyzing the
Product Architecture and noting conditions that must be true if a particu-
lar component is to be included. If a component is always included in the
product, metaprogramming notation is not required.

" Several Adaptable Components might be used to implement a single
Product Architecture component, depending on decisions in the Applica-
tion Model. In this case, use a conditional in the Component Mapping to
qualify the association between the Product Architecture and Adaptable
Components, thus indicating when a particular Adaptable Component is
used.

Step: Define Component Adaptation

Action Define a mapping from the decisions in the Decision Model to adaptations of
the Adaptable Components referenced by the Component Mapping.

Input * Decision Model

"* Component Design

"* Generation Design: Component Mapping

Result Generation Design: Decision Mapping

Heurist"cs When a particular Component Design is to be used to implement a particular
component in the Product Architecture, the variability of the Adaptable
Component (i.e., its parameterization) must be realized in terms of decisions

opm,99

from the Decision Model. Deftne the value of each parameter (by name) as
a derivation from Decision Model decisions.

3.2 RISK MANAGEMEN

Risk The Generation Design will not produce correctly-structured work pi oducts.

Implication Application Production will not produce acceptable application engineering
work products.

Mitigation Derive work product structures from the Generation Design for Application
Models of familiar work products and review the result with experienced
engineers to determine whether the result is acceptable.

4. INTERACTIONS WITH OTHER ACTIVITIES

4.1 FEEDBACK TO INFORMATION SOURCES

Condngency The Decision Model is incomplete, ambiguous, or inconsistent.

Source Decision Model Activity

Response Describe the inadequacies in the Decision Model. Proceed with Product
Architecture and document any assumptions made regarding the inadequate
portions of the Decision Model.

Contingency The Product Requirements for a work product family are incomplete,
ambiguous, or inconsistent.

Source Product Requirements Activity

Response Describe the inadequacies in the Product Requirements. Proceed with
Generation Design, and document any assumptions made regarding the
inadequate portions of the Product Requirements.

Contingency The Domain Plan cannot be satisfied with available technical capabilities.

Source Domain Management Activity

Response Propose (alternative) revisions to the Domain Plan that better match available
capabilities. Complete a Generation Design that satisfies the Domain Plan as
closely as possible.

ConWticy The practices and procedures specified in the Domain Plan are either

ineffective or inefficient.

Source Domain Management Activity

Response Describe the ways in which the practices and procedures are either ineffective
or inefficient. Propose revisions to the practices and procedures to make them
more effective.

OpMp-10

DE2.2.43. Generation Design aM•y

Contingency The Product Architecture for a work product family is incomplete, ambiguous,
or inconsistent.

Source Pruluct Architecture Activity

Response Describe the inadequacies in the Product Architecture. Proceed with
Generation Design, and document any assumptions made regarding the
inadequate portions of the Product Architecture.

Contingency The Component Design for a work product family is incomplete, ambiguous,

or inconsistent.

Source Component Design Activity

Response Describe the inadequacies in the Component Design. Proceed with
Generation Design, and document any assumptions made regarding the
inadequate portions of the Component Design.

4.2 FEEDBACK FROM PRODUCr CONSUMERS

Contingency The Generation Design for a work product family does not satisfy the Product
Requirements.

Source Domain Verification Activity

Response Modify the Generation Design to be consistent with the Product
Requirements.

Contingency The Generation Design for a work product family is incomplete, ambiguous,
or inconsistent.

Source Generation Implementation Activity

Response Refine the Generation Design to correct inadequacies.

opP', 01

7This page intentionally Left blank

0pp4102

DE.2.3. DOMAIN VERIFICATION ACTIVITY

1. GETIVNG STARTED

Domain Verification is an activity of Domain Engineering for ensuring the correctness, consistency,
and completeness of domain engineering work products. Both formal and informal techniques may
be applied to the domain engineering work products to verify these properties. Domain Verification
is an independent verification activity performed separately from, and in addition to, the verification
performed as part of each Domain Engineering Activity.

The Domain Verification Activity is motivated by the same concern that motivates Independent
Verification and Validation (IV&V) in a conventional software development process; namely, that
engineers involved in developing a work product cannot objectively judge the quality of that work
product. Independent validation of the domain engineering product, from the perspective of client
projects, is conducted in the Domain Validation step of the Project Support Activity.

Domain Verification establishes the correctness, consistency, and completeness of domain
engineering work products. These terms have a precise meaning in the context of this activity. The
concept of correctness is that of relative correctness. Similarly, the concept of completeness is that of
relative completeness. A work product is said to be correct (complete) with respect to some criteria
or to a more abstract representation of the entity the work product describes. For example, the Prod-
uct Implementation for a work product family can be said to be correct (complete) with respect to its
Product Requirements. Consistency, on the other hand, is a term that applies to a collection of related
work products (at the same level of abstraction) that form a whole. TWo products are consistent when
they exhibit the intended interrelationships. For example, the Product Architecture, Component De-
sign, and Generation Design work products for a work product family are strongly interrelated, and,
therefore, mutual consistency is an important property for these work products.

1.1 OJ••-nvES

The objective of Domain Verification is to independently evaluate the quality of domain engineering
work products.

1.2 REQuIED INFORMAnON

Domain Verification requires the following information:

"* Domain Definition

"* Domain Specification

Opp-O3

S.. i-..

"° Domain Implementation

"* Domain Plan: Practices and Procedures

1.3 REQu-nED KNowuEGE AND ExPEREmNC

The Domain Verification Activity requires domain and software knowledge and experience in:

"• Appropriate software verification technique3

"* How to systematically plan and perform software verification

2. PRODUCT DESCRIPTION

There are no Synthesis work products produced during Domain Verification.

3. PROCESS DESCRIPTION

The Domain Verification Activity consists of three steps shown in Figure DE.2.3-1.

Domain PlanDo
Practices and Definition Speification t

Procedres Dri o c

3.1- P--------

a Verify Domain Verify Domain Verify Domain
Definition Specification

FigureIDE.2.31. Domain Veification Process

3.1 NocEDuion

Step.- Verify Domain Definition

Acion Verify the correctness, consistency, and completeness of the Domain
Definition.

O4p- Domain Definition

0 Domain Plan: Practices and Procedures

Rwslt None

Hewisfics *Verify that the parts of the Domain Definition are correct and complete
with respect to the guidance provided in their respective activity
descriptions.

Opp.1O4

SDL23. Domkis I 1b W"M #Aok*

" Verify that the parts of the Domain Definition are correct with respect to
any specific quality attributes required of them in the Practices and
Procedures portion of the Domain Plan.

"* Verify that the Domain Synopsis, Domain Glossary, and Domain
Assumptions are mutually consistent.

"* Use the verification criteria, established for the Domain Definition in its
activity description, as guidance in verifying the Domain Definition.

" Use static analysis techniques (e.g., formal inspections, reviews, analysis
tools) to verify the Domain Definition. These techniques are appropriate
because the Domain Definition is typically represented in document form.

Step: Verify Domain Specification

Action Verify the correctness, consistency, and completeness of each work product
family in the Domain Specification.

Input * Domain Definition

"* Domain Specification

"* Domain Plan: Practices and Procedures

M/ult None

Heuwris•s Perform this step for each work product family in the Domain
Specification.

" Verify that the parts of the Domain Specification are correct and complete
with respect to the guidance provided in their respective activity
descriptions.

" Verify that the parts of the Domain Specification are correct with respect
to any specific quality attributes required of them in the Practices and
Procedures portion of the DImain Plan.

" Verify that the Product Requirements and Product Design for a work
product family are consistent with its Decision Model. This means that
these work products only reference decisions in the Decision Model and,
conversely, all applicable decisions in the Decision Model are reflected in
the work products.

"• Verify that the Product Architecture, Component Design, and Generation
Design for a work product family are mutually consistent.

"* Verify that the Product Design for a work product family is correct and
complete with respect to its Product Requirements.

Opp10

" Verify that the Process Requirements is correct and complete with respect
to the assumptions about the Application Engineering process in the Do-
main Definition. The Application Engineering process is normally not
explicitly described in the Domain Definition, but the Domain Definition
will typically constrain what is an acceptable Application Engineering
process.

" Verify that the Product Requirements and Product Design are correct and
complete with respect to the representation of the Product Family in the
Domain Synopsis and Domain Assumptions parts of the Domain
Definition.

" Use the verification criteria, established for the Domain Specification
work products in their respective activity descriptions, as guidance in
verifying the Domain Specification.

" Use static analysis techniques (e.g., formal inspections, reviews, analysis
tools) to verify the Domain Specification for a work product family. These
techniques are appropriate because the Domain Specification is typically rep-
resented in document form. If parts of the Domain Specification are repre-
sented in an executable form, the use of dynamic analysis techniques may be
appropriate.

Step: Verify Domain Implementation

Action Verify the correctness, consistency, and completeness of each work product
family in the Domain Implementation.

Input • Domain Specification

"* Domain Implementation

"* Domain Plan: Practices and Procedures

lesult None

Hewrisks 0 Perform this step for each work product family in the Domain
Implementation.

" Establish the criteria that you expect the Domain Implementation to meet
before you try to verify it. Identify analysis that you can perform that the
Domain Implementation is correct with respect to the Domain Specifica-
tion. Your plan should minimally establish verification objectives and
describe a strategy for meeting those objectives.

" Verify that the parts of the Domain Implementation are correct and
complete with respect to the guidance provided in their respective activity
descriptions.

" Verify that the parts of the Domain Implementation are correct with
respect to any specific quality attributes required of them in the Practices
and Procedures portion of the Domain Plan.

Opp- 106

D2.Z3. DetAin VWMiand Amci*

"* Verify that the Process Support and Product Implementation for a work
product family are mutually consistent.

"* Verify that the Component Implementation and the Generation
Implementation for a work product family are mutually consistent.

"* Verify that the Process Support for a work product family is correct with
respect to its Process Requirements.

" Verify that documents and automation that make up the Process Support
are engineered in a way that adequately addresses human factors con-
cerns. For example, you should establish that the Application Engineering
Environment portion of Process Support has the qualities of usability,
adequate performance, and tolerance of user errors.

" Verify that the Product Implementation for a work product family is
correct and complete with respect to its Domain Specification. The re-
quirements for the Product Implementation are represented in the Prod-
uct Requirements portion of the Domain Specification. The internal orga-
nization for the Product Implementation is represented in the Product
Design portion of the Domain Specification.

" Verify that a work product produced using the Process Support has
expected properties. Do this by resolving the decisions of the work product
family's Decision Model, producing the work product corresponding to
that model, and then verifying that the work product has the expected
properties. Specifically:

- Verify that the work product produced by the Process Support is
correct and complete with respect to the Product Requirements
and Product Design of its corresponding work product family (ap-
propriately instantiated with the decisions from the Decision Mod-
el).

- Verify the usability and correctness of the Delivery Support. This
should be established through direct inspection and by using the
delivery support to install/deliver the Application Product.

A good strategy for selecting work products to produce is to try to build all
or part of Legacy Products that are within the intended scope of the
domain.

Use the verification criteria, established for the Domain Implementation
work products in their respective activity descriptions, as guidance in
verifying the Domain Implementation.

Use conventional verification techniques that are appropriate to the task
of verifying the Domain Implementation for a work product family. Static
analysis techniques (e.g., inspections) are appropriate for static

Opp-107

representatiom of the Domain T(c.&, Application
EngneeingUser Guide). Dynamic analysis tecdfiue (e-g., test"n) are

a wiriate for dynamic aspects of the Doma Implementation (eg
automated support for specification, analysis, and product generation).

3.2 RisK M.KGmTNr

AratThe criteria used to evaluate the domain engineering work products will be
unduly influenced by the final content and form of the work products
themselves.

hThe effectiveness of the verification effort will be reduced.

all M Define acceptable levels of correctness, completeness, and consistency for
each domain engineering work product prior to examining it.

4. INTERACTIONS WITH OTHER ACTIVITIES

4.1 F•E•BcK TO IVORMmAnoN SoURcEs

Candmac The Domain Definition is incorrect, inconsistent, or incomplete.

Souwre Domain Definition Activity

RPon4 Precisely communicate how the Domain Definition is incorrect, inconsistent,
or incomplete.

Condma" The Domain Specification for a work product family is incorrect, inconsistent,

or incomplete.

Sowe Domain Specification Activity

kldone Precisely communicate bow the Domain Specification is incorrect,
inconsistent, or incomplete.

Condqgmc The Domain Implementation for a work product family is incorrect,
inconsistent, incomplete.

Soewr Domain Implementation Activity

Pu-pow Precisely communicate how the Domain Implementation is incorrect,
inconsistent, or incomplete.

4.2 FýEBACK FROM PRODUCr CoNsUmERS

None

Opp-log

DE.3. DOMAIN IMPLEMENTATION ACTIVITY

1. GETTING STARTED

Domain Implementation is an activity of Domain Engineering for implementing product and process
support for application engineering projects in a business area. The Domain Implementation must
satisfy the Domain Specification created by Domain Analysis. Product support consists of a set of pro-
duction procedures and associated Adaptable Components that can be used to create standardized
members of a work product family. Process support consists of procedures, documentation, and,
optionally, automation that support opportunistic reuse during Application Engineering. The
Domain Implementation Activity is performed for each work product family in the domain.

1.1 01ECTIE

The objectives of the Domain Implementation Activity are to:

"• Create a set of Adaptable Components and associated Generation Procedures as specified in
the Product Design for the work product families designated as relevant to the targeted project

"* Create standard procedures by which production of application engineering work products
takes advantage of provided reuse opportunities

1.2 REQuImE INFORMATION

The Domain Implementation Activity requires the following information:

"* Domain Specification

"• Legacy Products

1.3 REQUIRED KNOwLGE ADm Ei•u• C

The Domain Implementation Activity requires domain and software knowledge and experience in:

"• Technologies for creating, adapting, and composing Adaptable Components into work
products and the verification of such Adaptable Components and work products

"* Documenting and providing automated support for Application Engineering activities

"* How work products of existing systems in the domain are implemented

Opp-109

Dal Dmod -~M~= f"

2I PRODUCT DESCRIPTION

Name Domain Implementation

Purpose A Domain Implementation contains sets of Adaptable Components and
associated production procedures that you can use to create members of work
product families relevant to the targeted project. The Domain
Implementation also consists of the procedures, documentation, and,
optionally, automation that support opportunistic reuse during Application
Engineering.

Content A Domain Implementation consists of two components:

"* Poduct Impine aion. A Product Implementation contains organized
implementations of work product families (see Section DE.3.1).

" Process Support. An application engineering infrastructui,, that
supports the targeted project in performing opportunistic reuse of
work products (see Section DE.3.2).

Veri'ication The Domain Implementation supports each designated work product family
Criteria identified in the Domain Specification as prescribed by the Product

Requirements for that family.

3. PROCESS DESCRIPTION

The Domain Implementation Activity consists of the two steps shown in Figure DE.3-1.

3.1 PRocwUIEu

Follow these steps for the Domain Implementation Activity.

Step: Product Implementation Activity

Action Implement a work product family.

Input 0 Domain Specification

0 Legacy Products

Result Product Implementation

Heuristics * Derive the Product Implementation of a work product family from
appropriate Legacy Products.

* Describe a mechanical procedure by which application engin,'.i, can
select, adapt, and compose a draft application work product.

* Implement only the portions of the product (i.e., members of the work
product family) required for the targeted project.

OPP-110

DE3. Damei -mlmal"A

Legacy Domain

One work pr oduct cmonn

workuc produc eln

Step: Process Suppor Development Activit
AcinCet napicto niern nfatutr osporaes feitn

SProcess Suppor

amiUc ouetapoeueta plcto nier canfloaprtf

On okpoutcmoet h~eir nor alproi es an for denveloing a wr rout epteml t

an pod fuamily

Stp Prcs upreeopmetioa Activideaty mtdmcaim hc upr h fetv

aan applict enginee of tsp reusea of exitin

aplctoEngineering wo hetrkee products.

Input F * TOdIm ctImplemenutatis

Co• The~~ Domain Specification: Prces Rnopequiembinuosoinnste.

Rel P

Hersis0Dcmn rcdueta plcto nier canfloaprtf

4. aNEA SWT OHRATVTE

4. FEDAKT SOMTO ORE

Cotnec Ileuc DoanSeiiainianopee miuuo nosse

Oppil

Swte Domain Analysis Activity

rpone Describe how the Domain Specification is inadequate and suggest how it may
be modified. Proceed with Domain Implementation as far as possible with the
current Domain Specification.

Contingency Unforeseen opportunities arise that cannot be exploited given the current
Domain Specification, e.g., a situation where substantial software is made
available for use in the Domain Implementation that was not available when
the Domain Specification was completed.

Source Domain Analysis Activity

Response Document the opportunities and the required changes to the Domain
Specification.

4.2 FEEDBACK FROM PRODUCt CoNsUMRS

Contingency The Domain Implementation for a work product family is incorrect,
inconsistent, or incomplete.

Source Domain Verification Activity

Response Request clarification of the intent of the Domain Specification, if necessary.
Modify the Domain Implementation to satisfy the Domain Specification.

Contingency The support for the Application Engineering process is inefficient.

Source Project Support Activity

Response Revise the Domain Implementation based on Application Engineering
experience.

Opp-11 2

DE.3.1. PRODUCT IMPLEMENTATION ACTIVITY

1. GETTING STARTED

The Product Implementation Activity is the activity of the Domain Implementation Activity for
creating a Product Implementation. A Product Implementation is an implementation of a set of work
product families. A conventional implementation is a work product that solves a specific problem.
Similarly, a Product Implementation is an implementation that is adaptable to decisions supported
by the work product family's Decision Model in order to solve any of a family of problems. A Product
Implementation consists of Adaptable Components (e.g., code, documentation, and support for verif-
ication/validation) and procedures, as needed, for selecting, adapting, and composing these compo-
nents. The Adaptable Components and procedures are used to create draft application engineering work
products in accordance with an Application Model that describes the work product. The Product
Implementation Activity is performed for each work product family in the domain.

1.1 Ojacn

The objective of the Product Implementation Activity is to implement the Product Design using
artifacts that represent domain knowledge (e.g., code, documentation, test plans) from existing sys-
tems. This implementation is used by application engineers to generate required work products for
systems in the domain.

1.2 REQuImR INFORMaXON

The Product Implementation Activity requires the following information:

* Product Requirements

• Product Design

* Decision Model

* Legacy Products

1.3 REu-nEm KNowLEGE AND EXPERINCE

The Product Implementation Activity requires domain and software knowledge and experience in:

"* The design method used in specifying the Product Design

"• Existing work products in the domain, including how they are designed, implemented, and
verified, and what are their components and architectures

0pp4113

"* urget language and platform capabilities

"* The tedmologes for adapting and composing components into work products that make up a
pfduct

2. PRODUCT DESCRIPTION

Name Product Implementation

Purpse A Product Implementation is an adaptable implementation of a set of work
product families. An application engineer must be able to derive members of
a work product family by adapting the Product Implementation mechanically
based on the work product family's decisions in an Application Model.

Content A Product Implementation consists of the following parts:

"Adaptabk Components. An implementation of each work product
family's Component Design. Adaptable Components include soft-
ware, documentation, and verification/validation components that are
adapted based on the work product family's Decision Model (see Sec-
tion DE.3.1.1). Adaptable Components may be derived from Legacy
Product.

" Generation Procedure. An implementation of a Generation Design for
selecting, adapting, and composing Adaptable Components into draft
work products that satisfy the needs of the targeted project as ex-
pressed by decisions in an Application Model (see Section DE.3.1.2).

There is a Generation Procedure por work product family. Each
work-product-specific Generation Procedure corresponds to a partic-
ular set of Adaptable Components in a Product Implementation.

" Organization Structure. A grouping of all the Adaptable Components
that make up a Product Implementation (i.e., for all work product fam-
ilies in the domain). The grouping supports a view of all Adaptable
Components as a cohesive set of domain-specific reusable work prod-
ucts. The grouping must be consistent with all Generation Procedures.

Verification The Product Implementation correctly constructs existing or envisioned
Criteria members of the work product family as specified in the Product Design.

3. PROCESS DESCRIPTION

The Product Implementation Activity consists of the three steps shown in Figure DE.3.1-1.

3.1 INocEDuRE

Follow these steps for the Product Implementation Activity.

Opp*114

DE.3.1. hadta Implemeatalou Adi!.*

Prdc Oegae worrpodctcopoen
periemnt workuc prdI famlyign

prouc fail

produc famil compoentna

Figur DE.31-1.ProducntImpemntainPrcs

Deiso Prdutesg
Mod leayPous

Resuk AdaptableCComonnent

Organizatio

", .LTWIN -

Hwld • Derive Adaptable Components from Legacy Products.

0 Ensure that the Adaptable Component satisfies and is consistent with

relevant aspects of the Product Design and Product Requirements.

Step: Generation Implementation Activity

Action Automate or document a mechanical procedure by which application
engineers can derive draft application work products consistent with an
Application Model.

Input * Generation Design

"* Decision Model

"* Product Design: Product Architecture

Result Generation Procedure

Heuristics Ensure that the Generation Procedure satisfies and is consistent with relevant
aspects of the Generation Design.

Step: Organize Adaptable Components

Action Organize the Adaptable Components to facilitate reuse among all work
product families.

Input 0 Adaptable Components

"* Generation Procedure

"* Product Architecture

Result Organization Structure

Heuristics Develop an organization that can be mapped onto the available mechanisms
in the development environment of the targeted project (e.g., a hierarchi-
cal structure can be mapped onto files and directories). If you have a reuse
library or database management system available, you can organize the
components using more complex mechanisms.

Create a structure that supports definition, in Process Support
Development, of procedures by which application engineers can locate,
evaluate, and extract work products. A simple approach is to make each
work product family a separate directory under a single root that locates
the entire library. If you have several work product families of the same
type, you may want to group them together.

• Use the Product Architecture as the basis for the Organization Structure.
Your structure must allow use of all Generation Procedures.

Opp-l16

DEL11. N~dW -=W8d=Ak

Use standard, recognized structures in the domain (e.g., for modules, an
information hiding structure) to organize families. This can simplify
browsing among components in complex families.

3.2 RISK MANAGEMENT

Risk The Product Implementation will be inconsistent with Product Requirements
for a work product family.

Implication Application work products will be generated that do not satisfy the Product
Requirements.

Mitigation When uncertainties arise, review the Domain Specification with domain
analysts to clarify their intent. Review the Domain Implementation with other
experienced engineers to identify omissions and inconsistencies. Derive test
work products based on knowledge of existing or anticipated systems for
review with experienced engineers.

4. INTERACTIONS WITH OTHER ACTIVITIES

4.1 FEEDBACK TO INFORMATION SOURCES

Contingency The Domain Specification is incomplete, ambiguous, or inconsistent.

Source Domain Specification Activity

Response Describe how the Domain Specification is inadequate, and suggest how it may
be modified. Proceed with Product Implementation as far as possible with the
current Domain Specification.

Contingency Unforeseen opportunities arise that cannot be exploited given the current
Domain Specification, e.g., a situation where substantial software is made
available for use in the Domain Implementation that was not available when
the Domain Specification was completed.

Source Domain Specification Activity

Raponse Document the opportunities and the required changes to the Domain
Specification.

4.2 FEEDBACK FROM PRODUCT CONSUMERS

Contingency The Product Implementation does not satisfy the Domain Specification for a
work product family.

Source Domain Verification Activity

Response Request clarification of the intent of the Domain Specification if necessary.
Modify the Product Implementation to satisfy the Domain Specification.

Opp-117

CouaiirwL7 Support for sciccdng adapftn. and composing Adapt"bl Compocafts is

inefficienL

Souwce Process Support Development Activity

Rasponsw Revise the Generation Procedures based on Application Engineering
experience.

Opp-l18

DE.3.1.1. COMPONENT IMPLEMENTATION
ACTIVITY

1. GETTING STARTED

Component Implementation is an activity of the Product Implementation Activity for creating an
Adaptable Component. A component is any work product fragment (e.g., software, documentation,
or verification/validation artifact) produced during the Application Engineering process. An applica-
tion engineering work product consists of a set of components. An Adaptable Component is a repre-
sentation of a family of components that satisfies a Component Design (i.e., is adaptable to specified
variations). The variability of an Adaptable Component enables application engineers to extract
components to form a draft application engineering work product.

1.1 OBjcrrns

The objective of the Component Implementation Activity is to implement an Adaptable Component
that satisfies a Component Design, consistent with relevant aspects of the Product Requirements and
Product Architecture.

1.2 REQIRED INFORMATION

The Component Implementation Activity requires the following information:

"* Product Requirements

"* Product Architecture

"* Component Design

"* Legacy Products

1.3 REQUIRED KNoWLEGE AND EXPERIENCE

The Component Implementation Activity requires domain and software knowledge and experience
in:

"* Applicable standards and techniques for design, implementation, and verification of software
components

"* How to design, implement, and verify components of a work product family given a
specification for the family

"* The design and implementation of existing systems in the domain

Opp-119

2. PRODUCT DESCRIPTION

Name Adaptable Component

Purpose An Adaptable Component is a component (e.g., of software, documentation,
verification/validation support) that is adaptable with respect to variations
specified in the Component Design.

Content An Adaptable Component is an implementation of a family of components.
This family is defined by a Component Design, with support by portions of the
Product Requirements and Product Architecture. The Component Design
characterizes an Adaptable Component by specifying the permissible
adaptations of the component, along with the desired characteristics of its
implementation.

Form and An Adaptable Component is uniquely named and consists of two parts: an
Sbucatu adaptability interface and a body.

A component family is characterized by a set of common capabilities and
variations in those capabilities. The adaptability interface is a specification of
a set of adaptation parameters that provide for the characterization and
extraction of a particular instance of a component family.

The body is the sum of the potential implementations of all of the components
in the family. The term "potential" is used because the parameters are
sufficient to select any component family instance uniquely, but the particular
implementation either may not be available or may be extracted from a
representation of the family or relevant subfamily. This varies with the
mechanism used for implementing adaptability in the Adaptable Component.
Three common mechanisms for implementing an Adaptable Component are:

"* Physical Separation. Represent members of the component set as
physically distinct entities (e.g., in separate files on a computer).

" Target-Language Mechanisms. Use the language-specific facilities to
represent different component set members. Ada generics, C+ + tem-
plates, Interleaf effectivity control, and WordPerfect macro features
are examples of target-language mechanisms for representing an
Adaptable Component.

" Metaprogramming. Superimpose a language for handling variations on
top of the language in which all members of the component set are
expressed.

These may be used separately or in combination to implement a particular set
of components.

The Booch Ada stack packages (Booch 1987) are an example of an Adaptable
Component. There is a unifying concept of what a stack is and how it works.
Different stack components are extracted based on decisions such as:

Opp-120

DE.3.1.. Compoamt Iapmsaiatedom Aaiv*

" Typ. The type of data that can be put into the stack.

" Itauvon. Whether an indexing mechanism should be available for
moving forward and backward through the stack in addition to simply
pushing elements onto and popping elements off of the top of the
stack.

"* Garbage Cf8eaion. Wlhether the stack should manage unused stack

space dynamically for later use.

"* Bounding. Whether the stack should be bounded in length.

The Booch packages use physical separation to implement 26 different types
of stacks. This physical separation approach has the advantage of being simple.
If a family has 10 instances, there are 10 implementations and each can be
written and verified independently. Physical separation does not take
advantage of similarities among the instances, however, nor does it make
explicit how variabilities determine the content of each instance.

Ada provides generic packages as a standard facility that you can use to implement
a code Adaptable Component whose instances differ only in the values of
well-defined placeholders that can be substituted at compile time. The "type"
variability of stack packages may be represented using a generic package. The
placeholders are parameters defined in the adaptability interface of the Adaptable
Component. This approach has the advantage of represenfting variabilities for the
component family more compacdy and unifornly, lhowr, only a simple form of
parameter substitution is supported.

A metaproganming approach (Campbell 1989) uses a preprocessing mechanism
to extract a concrete component from an Adaptable Component. This approach
embeds target text fragments of a work product (e.g., code, documentation,
verification/alidation support) with a superimposed metaprogamming notation.
The meta -g notation specifies how the target fragments are to be
combined and adapted, based on the parameters in the adaptability interface of the
Adaptable Component- metaprogrammIg adaptations indude:

"* Substitution of parameter values

"* Conditional inclusion of text fragments

"* Repetition of text fragments

"* Definition and in-line instantiation of parameterized fragments

This approach provides greater flexibility in representing a component family
compactly but results in more complex descriptions. Since many implementa-
tions may be derived from a single description, domain engineers must both
manually inspect that description and extract and verify representative
instances. Example DE.3.1.1-1 illustrates a small fragment of a Component

Opp-121

Impemetatonfor a work product family of the TLC domain. This exame
conttainws aportion of the imlmnainfor the Adaptable Component
specified in Example DE 2.2A42-1.

Ndestrian Lanes w"t Push~ &Mcm (111PL-PB-1)

Piarpeoss The purpose of this segment is to provide the functionality needed by t&e controller segment to manage the
pedestrIia n lane indicators at the intersection considering the input provided by the tri mechanism.

Desalption: The segmentis composed of those functions needed to turn on and off the walk and don't walk inicator
present in the pedestrian lanes of the intersectima.he finctions needed to read and reset the pedestrian kanee pus
buttons are also contained in this segment.Th pedestrian lanes' -m buttons assmon a - jOP-oerfacr> interface
to the trafic fight indicators

System Capabilities:

<if COMI' bllnklngrate = yes then>
The ILC sy"m shall be capsble of setting the blinkin rate aseocdated with the walk-don't walk indicators at the
peetra lanes.
<endif>

Example DE.3.1.1-1. Fragment of the =h Component Implementation for the SytuSp tSpecificationo

Verfiation 0 The Adaptable Components implement their specifications as defined in
Criteia the Product Architecture and Component Designs.

"* The Adaptable Components produce the correct variations in concrete
components.

"* Behaviors or constraints imposed by Product Requirements or Product
Architecture on the Adaptable Component are all supported.

3. PROCESS DESCRIPTION

Thbe Component Implementation process consists of all activities necessary for implementing an
Adaptable Component to its Component Design specifications, consistent with relevant parts of the
Product Architecture and Product Requirements. This involves the design, implementation, and veri-
fication of the work product family of software, documentation, or test-support components. It my
involve the reengineering of existing components of work products from previously built systems. Thbe
Component Implementation Activity consists of the three steps shown in Figure DE.3.1.1-1.

3.1 PRocEDURE

Follow these steps for the Component Implementation Activity.

Step: Design the Component's Internal Structure

0pp 12 2

r ~~~ ~ D.I --------------------- ----

,/a/on Cbtrea te nitraldsg ha uprs h eesayvraio mn h

himemer o the Aomonet setrpeetdb h aatbecmoet

S•Verifyothet Design

SProDuc ArchitOKPremtr

6;::> (and

onewa PwL% am PnentAcd a Creatan i nternal designa

membersiofthe component serersnebyteapalecmom

H•pi 0 Thpen AdDtbesCompnensitra einms aif topnn

Deinseiiain0h tutrso h Product Architecturemyi-

pose additional requirements on the internal strcue (e.g., for concur-
rency or level of performance) or define constraints on how other
"nupow w& are used in the implementation.

0 Envision how to implement required members of the component's work
product family. Create structures, according to the design method used,

Opp-123

DUL .C.•, caa Ipmmal•m inda,,,y

that characterize the required implementation. Parameterize each
structure, if appropriate, with adaptability parameters that vary the struc-
ture, as required, for different members of the component family.
Consider the required operations of the members.

"Determine whether a suitable component that approximates one of these
desired instances is available from Legacy Products. Identify and evaluate
the quality of each such component and designate it as a Candidate Com-
ponent for further use. Determine which Adaptable Component variations
are implicitly addressed by this selected Candidate Component.

" Consider starting with the internal designs of identified Candidate
Components. Portions of several candidate components may be used
collectively to implement the Adaptable Component. These components
may implement different variations that will be required for the family.
Characterize which instance of the family corresponds to each component
(i.e., by its parameter values). Consider whether each design is sufficiently
well-engineered and representative of the family, or at the least of a
subfamily, to provide substantial leverage in being refined to represent
other variations and the family as a whole. Consider that they may
represent different subfamilies that should be structured differently. See
if their designs can be unified using variations. Be sure you can still derive
each of the components with an acceptable structure.

"• Use adaptation mechanisms (e.g., target-language mechanisms,

metaprogramming) already present in the existing work products.

Step: Implement the Component

Action Elaborate the internal design to implement the Adaptable Component.

Input * Adaptable Component: Internal design

"• Component Design

"* Product Architecture

"• Candidate Components

"* Legacy Products

Rawk Adaptable Component

Heuristics * Fill in the internal structure with the details of the implementation. Keep
in mind how the adaptabilities affect the content of the parts of the
structure.

0 If suitable Candidate Components were used in creating the internal
design, then the implementations of those components can be useful as the
starting point in implementing the Adaptable Component.

Opp-124

DE3.1.1. Ccmpont Inuommman Acty

" Parts of the Adaptable Component might have to be engineered from
scratch if all elements of the Adaptable Component's implementation can-
not be obtained from existing Candidate Components. These areas should
be given much greater thought to ensure that you produce the correct
content.

" Consider reengineering existing application engineering work products
(e.g., Legacy Products) to increase their reusability. For example, you
might want to replace arbitrary limits on data structure size with generic
parameters. You should consider this if it will relax or remove constraints
in your Decision Model. You should take into account any documentation
or coding standards for the targeted project when you reengineer existing
work products.

Step: Verify the Component

Action Verify that the Adaptable Component satisfies all relevant specifications.

Input * Adaptable Component

"* Component Design

"• Product Architecture

"• Product Requirements

"* Candidate Components

Result Verified Adaptable Component

Hewuics * Perform rigorous inspection of the Adaptable Component by other
experienced engineers. The Component Design, as well as relevant parts
of the Product Requirements and Product Architecture, should be verified
as being satisfied.

0 Derive representative instances of the Adaptable Component and test
those instances in a conventional fashion to see if they operate correctly.
One part of this activity is the creation of test-case scenarios that can be
used in regression testing of the Adaptable Component when it is modified
in the future. These scenarios may be made adaptable to the same parame-
ters as the Adaptable Component itself so that a scenario can be derived
for a particular test instance.

* Rederive the Candidate Components that influenced the implementation
of the Adaptable Component. The original and derived instances can then
be compared to see if and how they differ and whether an equivalent result
can be produced.

* Use of a Candidate Component may have been based on assurances that
the component received with respect to certain desired properties such as

o01- 125

correctness, reliability, certification, and trust (in the security sense).
Note, however, that modification of the component can invalidate some
of these asurances (i.e., certification and trust). It is important to verify
that the desired properties are retained when the component is extracted
from the resulting Adaptable Component.

3.2 RIsK MANAGKMFmr

Ris Cerain combinatons of adaptability are nt fuly supported in the Adaptable

Mitigation In verifying the Adaptable Component, use bounds-coverage techniques to
identify a variety of adaptability combinations in deriving test instances.

Risk The effort required to implement all specified adaptabilities for an Adaptable
Component is not viable compared to that rewuired to develop concrete
components which support a single system development effort.

Implication Only a subfamily of the Adaptable Component will be available for production
of systems in the domain.

Miutagion Implement the variations required for the targeted project under
development. The development of these variations may require less effort
than developing all possible variations and can be refined as additional needs
arise. The Adaptable Component can be evolved to a completed state over
several development iterations of a system or systems.

Risk Determining the value of existing components as a basis for the Adaptable
Component will require too much effort (e.g., too many components to search
through, too labor intensive to look through complicated components, too
difficult to determine whether a component is correctly implemented).

IMpicadon Effort to evaluate and reengineer existing components exceeds the effort to
create the Adaptable Component from scratch.

A'itgation If there are too many existing components to search through to find a good
baseline component, limit the amount of effort dedicated to the search, and
use the best approximation that results from the limited search.

If looking through complicated components is too labor-intensive, reduce the
number of components that will be reviewed. If the component is overly
complicated, relying on higher-level documentation (i.e., requirements,
high-level design, or testing documentation) of the component as an indicator
of its worth may be beneficial. Reviewing documentation on the existing
component is likely to take less effort than reviewing code.

If determining the correctness of the component is difficult, then determining
correctness from previous test documentation may be sufficient. Reliance on
existing components may be greater if engineers are available who developed,
or at least used, the existing components.

Opp-126

DE3.-1. Compmo Imnoematica A"*

Risk Some component set members are not present in the Adaptable ComponenL

Implication Application engineers will not be able to derive certain application
engineering work products.

Mitg, ation When verifying the Adaptable Component, make sure you can derive at least
a set of components equivalent to those that went into creating the Adaptable
Component. (If you reengineered components, you may not be able to derive
an identical set.)

Risk Modifying the baseline component may invalidate assurances of quality that
the component possessed (e.g., certification).

Implication Modifying a certified component will require that the resulting Adaptable
Component must pass, once again, the tests required for assurance of given
properties.

Mitigation Concentrate effort on areas of particular concern. If the given properties
are less important for the component family as a whole, treat that particu-
lar member as a special case (i.e., a component subfamily in its own right).
That is, if a component family contains several members, only one of which
is certified, define two Adaptable Components, one whose component
family contains the certified member and another which contains all the
uncertified members.

0 Tly to retain the essential nature of the baseline component in the
Adaptable Component so that proving assurance of given properties is not
an expensive process.

4. INTERACTIONS WITH OTHER ACTIVITIES

4.1 F•E•BACK TO INFORMATON SOURCES

Contingency The Component Design is incomplete, ambiguous, or inconsistent.

Source Component Design Activity

Response Describe how the Component Design is inadequate, and suggest how it may
be modified. Proceed with Component Implementation as far as possible with
the current Component Design.

4.2 FEEDBACK FROM PRODuCr CONSUMERS

Contingency The Component Implementation does not satisfy the Component Design.

Source Domain Verification Activity

Response Request clarification of the intent of the Component Design, if necessary.
Modify the Component Implementation to satisfy the Component Design.

Opp-127

This page intentionally left blank.

Opp-128

DE.3.1.2. GENERATION IMPLEMENTATION
ACTIVITY

1. GETTING STARTED

Generation Implementation is an activity of the Product Implementation Activity for creating a
Generation Procedure. A Generation Procedure is a precise desc;iption of how to derive draft ap-
plication engineering work products consistent with the decisions in an Application Model for a work
product family. A Generation Procedure may be automated or may take the form of a precise
description that application engineers can mechanically follow to create work products.

1.1 OBjEjrNrs

The objective of the Generation Implementation Activity is to create a Generation Procedure as
specified by a Generation Design.

1.2 REQUIRED INFORMATION

The Generation Implementation Activity requires the following information:

"• Generation Design

"* Product Architecture

"• Decision Model

"* Component Designs

1.3 REQUIRED KNOWLEDGE AND EXPERNMCE

The Generation Implementation Activity requires knowledge and experience in:

"* The notation used in specifying the Generation Design

"* The technologies for adapting and composing components into work products

2. PRODUCT DESCRIPTION

Name Generation Procedure

Opp-129

Purose This is a procedure that an application engineer uses to create draft
application engineering work products for a member of a work product family
using Adaptable Components. This procedure is either implemented as a
product generator or documented as a manual procedure.

Content The Generation Procedure is a procedural description for producing an
application engineering work product that satisfies the mappings of a
Generation Design. The Generation Procedure describes how to select
appropriate Adaptable Components, how to apply decisions from an
Application Model to adapt them, and how to compose them to create the
work product in final form.

Form and The form of the Generation Procedure depeads on whether the procedure is
Shtture automated or manual. The Generation Procedure is either implemented as an

automated product generator or documented as a manual procedure to be
followed by application engineers. If the manual form is chosen, then the
Generation Procedure form is likely to resemble the form of a Generation
Design. If the Generation Procedure is implemented in the form of a product
generator, however, it will be a conventional software program.

Verifiation 0 The Generation Procedure for a work product family can be used to
Criteia produce application engineering work products that exhibit the internal

organization specified in the Product Architecture.

"• The Generation Procedure for a work product family can be used to produce
application engineering work products that satisfy the Product Requirements.

" If a manual form is used, the Generation Procedure for a work product
family clearly describes how draft application engineering work products
are constructed from Adaptable Components based upon decisions
contained in an Application Model.

3. PROCESS DESCRIPTION

The Generation Implementation Activity consists of the two steps shown in Figure DE.3.1.2-1.

3.1 PROCEDUPE

Perform one or both of the following two steps. The appropriate action depends on what automation
you determine to have a significant payoff in Application Engineering.

Step: Document the Generation Procedure

Action Document some or all of the Generation Design.

Input • Generation Design

"* Product Architecture

"• Decision Model

"* Component Designs

Opp-130

Decision Geneotin Productp
Model

Design
Arcdtyct

D g

Genermation PrGeueneainPodr

He~is heGeertin esgnisa reis dscipio o te eqirdGeneration
~~~~Procedure. ouetthprcdrinafrthtsusbebaplaio

Brce Supr od Nan rjc upr

One work a cofooo s o r

peru wonrken produc itfaodmtAihtetue

produc foamilyrdc fml.Te eiin oe roie h

Figreganiz- Gneation ofmthemdetisions'neta srchema

tp:AMutmeth Generation Procedure

Aewios D TevGeneratoatio esignols tat ipreien dscription l of the rqie Generation

Procedure. sDocuedn the pedurtion Desim.a

" Includeon desion

prdc•ossetwt t Product Architecture.

"I Inld ecito fhwt ces h eiin na plcto

Moe o okpoutfml.•h Decision Model poie h

Prcdr asdfndi haGnrto ein

Preceis qipon M deelopetadP'jdStpi

0 Component Designs

Opp-131



D.L., owa,, Iinpm•ok,,so AMb,

Sul Generation Procedure

Heuriilics If the decision-making Activity in Application Engineering is supported by
automation, then the Generation Procedure must access the decisions. If
the activity is not automated, then there must be an automated mechanism
for providing the decisions as input to the Generation Procedure. The De-
cision Model provides the organization of the decisions' conceptual sche-
ma.

If a metaprogramming technology, such as described in the Component
Implementation Activity (see Section DE.3.1.1), is used to implement the
Adaptable Components, then the same metaprogramming technology is
used to instantiate those components. Metaprogramming technology may
also be useful in implementing portions of the Generation Procedure
itself.

Creating an automated Generation Procedure is a software development
task. It requires the design of the required program, implementation to
that design in a programming language, testing to verify that the resulting
program implements the Generation Design correctly, and documenta-
tion so that the program can be correctly modified as the Generation
Design changes.

Tools such as the UNIX make facility may be useful in automating the
procedure for composing adapted components into draft work products.

3.2 RISK MANAGEMENT

None

4. INTERACTIONS WITH OTHER ACTIVITIES

4.1 FEEDBACK TO INFORMATION SOURCES

Condticy The Generation Design for a work product family is incomplete, ambiguous,
or inconsistent.

Source Generation Design Activity

Response Describe how the Generation Design is inadequate, and suggest how it may be
modified. Proceed with Generation Implementation activity as far as possible
with the current Generation Design.

4.2 FEEDBACK FROM PRODUCT CONSUMERS

Con•iWency The Generation Procedure for a work product family does not satisfy the
Generation Design.

Opp-13 2



Soeur Domain Verification Activity

Aqppom Request clarification of the intent of the Generation Design if necessary.
Modify the Generation Procedure to satisfy the Generation Design.

C. utncy A manual Generation Procedure is difficult to use.

smww project Support Activity

RApomn Investigate new forms for conveying the Generation Procedure to the
application engineers.

C&Vbngmy The Generation Procedure cannot be used in its current form in the
Application Engineering process.

Sowre Process Support Development Activity

Responsw Revise the Generation Procedure (e.g., improve automation or upgrade
documentation) so that it can be effectively used by application engineers.

oM133



Th pag mtenwinak lft blamn

Opp 134



DE.3.2. PROCESS SUPPORT DEVELOPMENT
ACTIVITY

1. GETTING STARTED

The Process Support Development Activity is the activity of Domain Implementation for creating the
Process Support component of Domain Implementation. Process Support is the infrastructure that
supports the practice of Application Engineering by defining the procedures and standards by which
application engineers develop applications (i.e., the Application Engineering process). It optionally
provides automated mechanisms which support the effective and correct performance of the
reuse-related actities of Application Engineering.

1.1 OJECnvrM

The objectives of the Process Support Development Activity are to:

"* Document policies and procedures that facilitate reuse of existing work products during
activities of an Application Engineering process

"* Determine the appropriate degree of automation that will support the Application
Engineering process and construct the automated support

1.2 RaQunm ImrORMmAON

The Process Support Development Activity requires the following information:

"* Domain Definition

"* Domain Specification

"* Product Implementation

1.3 RnQunuzD KNowuLGz mD EXPERmNCE

The Process Support Development Activity requires domain knowledge and experience in:

"• How appfication engineers resolve issues in constructing work products in the domain

"* The cowepts and structures by which domain experts communicate the distinguishing
features of work products in the domain

Opp.135



* Documenting, in a coherent and usable, form, the use of conventioes, policies, and procedures

* Software prouction processes, met•hs, and practices

2. PRODUCT DESCRIPTION

Naom Process Support

Purpme Process Support is a description and explanation of the conventions by which
application engineers produce work products (via activities of the Application
Engineering process) and automated support for efficient performance of the
Application Engineering process.

Conten Process Support consists of two parts:

" Application Engieafei User's Guide. A document that guides
application engineers in how to exploit reuse opportunities to produce
a set of supported work products.

" App/ication Enginern Enmnirnent. Automated mechanisms that
help the application engineers reuse work products. This includes the
mechanisms that create the application engineers' view of the orga-
nization of the Adaptable Components and those tools used to access
the Adaptable Components.

Veriation 0 Draft work products for the family can be produced using the Application
Criteria Engineering Environment by following the User's Guide.

* Process Support provides the ability to access all work product families
supported by Product Implementation.

2.1 APPLICATION ENGINEIG UsERs GumD

PwPose The Application Engineering User's Guide provides a detailed description of
how application engineers can use the Application Engineering Process
Support to exploit reuse opportunities. This guide expresses the
decision-making process that application engineers follow for a domain.

Content The Application Engineering User's Guide instructs application engineers in
how to recognize reuse opportunities and how to select, adapt, and compose
reusable components of a work product family to exploit reuse opportunities.
This guide also designates and explains the effective use of automated
mechanisms that support the process.

Form and The User's Guide should conform to your organization's standards and
S$Ucu•M guidelines for documentation.

Vfication The User's Guide describes how to select, .dapt, and compose components for
Crieria every work product family in the Product Implementation.

opp.S



DE3Z2 Proem. Suppo Dwedapme AaMty

2.2 APPLICATION ENGINEERING ENVIRONMENT

Purpose The Application Engineering Environment consists of all automated
mechanisms, described in the User's Guide, that provide access to Adaptable
Components for all domain-specific work products that application engineers
reuse. The Application Engineering Environment automates the mechanical
portions of the process for increased consistency within a product and less
opportunities for undetected error in.

Content The Application Engineering Environment consists of both tools that are part
of the host operating system and tools developed during this activity. Together,
they define a view of the Adaptable Components, along with a set of
mechanisms that allow application engineers to access these components.

Form and • The tools adhere to the organization's standards and conventions for its
Structure software development environment.

* The view of the Adaptable Components provided by the Application
Engineering Environment must facilitate the tasks application engineers
undertake when using it. The Application Engineering User's Guide
describes these tasks in detail.

* From the application engineers' perspective, the structure of the
Adaptable Components is determined by the tools with which they access
the structure. These tools may or may not hide the actual structure.

* The Application Engineering Environment must facilitate application
engineers being able to unambiguously locate, evaluate, and extract work
products.

Verif'uation * All automated tools described in the User's Guide exist and behave as the
Criteria User's Guide states. All Adaptable Components produced during

Component Implementation Activities are accessible.

0 Automated mechanisms contain no residual errors.

3. PROCESS DESCRIPTION

The Process Support Development Activity consists of all activities necessary to create appropriate
Process Support for an application engineering work product family. You perform this activity for each
work product family, augmenting the User's Guide and Application Engineering Environment, to
support the new or revised work product families. In many respects, this activity involves work which
is similar to that of a conventional software development project. Furthermore, if you decide to auto-
mate some or all of the Application Engineering process (i.e., create an Application Engineering En-
vironment), then you apply software development methods to accomplish that goal. The Process
Support Development Activity consists of the two steps shown in Figure DE.3.2-1.

3.1 PRocEDuRE

Follow these steps for the Process Support Development Activity. Perform these steps in the order
listed but iterate through them until you are satisfied with the work product as a whole.

Opp-137



Deveop theApplicatio
Fwiiern unesu G5.uid

a ~us.i' Guide

Prdc Deeo hIApfcto

Product Suceop an Appicaa igUsew a

Step: lemeloptthe Aplcto niern se ud

Acdo Create a~~ Ldea~iled gide5 for applicto nier hc ntut hmoo
to pefr vraseto plcto Egneigicuigmnatp

andefcieueo n uoae mcans.

anp arcs eqieet

"Doai Deiito

"Doai Spcfcto

Pj*Apiato Eninern Usrsud

anier wol oaeadgnrt okprdcsi h plcto n

Figuering±-1 Process Support. Deytopdsciet Proeuse sasrefsesta

Stpaeeoh pplication engneeingeUer's candalwe os ntrs faypoeue n

Acti Creteandeailds gourd forgappliation enginererfrsiwhichgivnstrctsvty themtionho
to performbever aspectoftApicatio sengineern inldngmfa steps fra plcto

kuik pplictionEngineering User'siGuid

Heitc *Peet i smc dti sposbe adsrpio fhwaplcto



DL3.2- Prcou &upof DVWOM M AoaMIMI

" Provide an overview that helps application engineers understand the types
of work products in the domain. You can draw on the components of the
Domain Definition for this overview.

" Create scenarios that describe an Application Engineering activity involving
reuse. These scenarios will help you organize reuse and incorporate it into
your Application Engineering process. Use the targeted project's
environment as the basis for your scenarios.

" Describe, based on the Process Requirements, the activities where
application engineers can reuse work products of this type.

" Each work product family has its own Decision Model and Generation
Procedures. A simple way to keep them separate is to describe each work
product family in its own section.

" When you have described reuse for several work product families, you will
notice similarities in the procedures. You should note these in the User's
Guide as preliminary organizational standards for reuse. Some of these
may come from conventions that exist in your organization, whereas others
may have been introduced to facilitate reuse. Be sure that the conventions
you describe do not interfere with Application Engineering.

" Describe reuse of a work product as a procedure, i.e., a set of steps to
follow. Make each step of reuse as mechanical as possible. This will help
you eliminate ambiguity and determine which portions you can automate.

" You can communicate certain concepts to application engineers using
domain engineering work products developed for the work product family-

- Use Product Requirements to describe the common traits of all
work product family members and the characteristics of individual
members.

- Incorporate concepts from the Procedure for Work Product
Creation (from Process Requirements) into the descriptions of
steps for reusing work products. Ideally, you can present reuse to
application engineers as a desirable, but optional, step in creating
a work product.

- Use the Decision Model to describe the decisions the application
engineer must make to identify an individual work product family
members. Incorporate engineering judgment and domain
knowledge that domain experts use to formulate a set of answers.

- Use the Product Architecture to describe the internal
organization(s) of a member of the work product family.

- Use Component Designs to provide detailed interface information
that will help application engineers determine whether they can
use a given component in their work product.

opp-13 9



Use Generation Procedures to describe how to extract a member
of the work product family. Note that the Generation Procedure
does not account for the automation in the Application Engineer-
ing Environment. Automation may allow application engineers to
use tools to perform certain steps; describe the tools, not the steps.

You should understand (and document) the expertise expected of application
engineers. This will affect the type of information you place in the User's
Guide.

Step: Develop the Application Engineering Environment

Action Design, implement, and verify the automated mechanisms needed to support
the Application Engineering process.

Input • Application Engineering User's Guide

"* Product Implementation

"• Product Architecture

Reut Application Engineering Environment

Hewitics 0 The Application Engineering User's Guide specifies what aspects of the
Application Engineering process are automated. Revise the User's Guide
if this cannot be fully satisfied.

" Creating an Application Engineering Environment is a software develop-
ment task. You must design an environment, implement that design in a
programming language (or via equivalent commercially-available soft-
ware technology), and test it to verify that the resulting environment im-
plements the Application Engineering User's Guide correctly.

- You must provide, at a minimum, enough automation to allow
application engineers to access the Adaptable Components. In this
step, specify other tools that you think will be a cost-effective way to
simplify the steps of reuse.

- If the User's Guide asks application engineers to browse through
the Application Engineering Process Support, consider using file
system directory-changing commands.

" Reduce your up-front development costs by taking advantage of available
technology to automate various activities within the infrastructure. For ex-
ample, there are planning and scheduling tools for project management;
object-oriented databases and user interface tools that can support speci-
fying an Application Model; testing, prototyping, and environment simu-
lation tools for validation; simulation and dynamic assessment tools for
assessment; and metaprogramming and system generation tools for prod-
uct generation. However, you must also consider what resources you will

Opp-140



DE32. Proces Support Devclop Actdvky

need to integrate these or other technologies into a coherent
infrastructure.

- Determine how you want application engineers to view the
Adaptable Components and how you want them to perform the
task of locating, evaluating, and extracting them. The tools you al-
low them to use influence this view. At a minimum, you can use the
native operating system tools to browse and manipulate the file
structure specified as the Organization Structure in the Product
Implementation.

- The Organization Structure of Product Implementation provides
the basic structure presented by the Application Engineering Envi-
ronment. You may also want to implement other structures that
help application engineers locate and evaluate components. For
example, if your tools include database facilities, you can provide
alternate indexes.

- Identify the tools that the targeted project has decided to use as
part of Application Engineering. Make them part of the
Application Engineering Environment, where possible.

3.2 RISK MANAGEMENT

Risk The procedures described in the Application Engineering User's Guide will
be hard to follow (i.e., vague, incomplete).

Implication Application engineers will have a difficult time reusing work products. This
may cause excessive use of the project support staff. It may also cause
application engineers to favor creating work products from scratch rather than
reusing existing work products.

Mitigation Review the Process Support documentation with application engineers to see
what areas of the process are incomplete, inconsistent, or ambiguous. Have
them generate example work products, noting where they misinterpret or
misuse the documentation.

4. INTERACTIONS WITH OTHER ACTIVITIES

4.1 FEEDBACK TO INFORMATION SOURCES

Coningency The Process Requirements work product is incomplete, ambiguous, or
inconsistent.

Sowre Process Requirements Activity

Response Describe specifically where the Process Requirements work product is
inadequate and suggest improvements. Proceed with the implementation of
Process Support as far as possible while the Process Requirements are being
updated.

Opp-141



MwThe Generation Procedure cannot be used in its current form in the

Application Engineering process.

soure Generation Implementation Activity

RPApomW Describe how the Generation Procedure needs to be changed so that it will fit
within the Application Engineering process.

4.2 FEDBAcK FROM 'RoDUCr CONSUMmES

Condmancy The Application Engineering process is difficult to use or is too
labor-intensive.

soure Project Support Activity

Rapon Identify where the problems exist and discuss, with the application engineers,
ways of reducing (or eliminating) these problems (e.g., through the use of
automation).

Opp-142



DE.4. PROJECT SUPPORT ACTIVITY

1. GETTING STARTED

The Project Support Activity is an activity of Domain Engineering for validating Application Engineering
Process Support and assisting projects in its use. Application Engineering Process Support (AEPS)
is the application engineering name for the Domain Implementation. Tb ensure that the baselined Do-
main Implementation is usable and effective, Project Support independently validates it from the per-
spective of the product and process needs of the targeted application engineering project. Project Sup-
port assists application engineers in effective use of the process and supporting materials, through
delivery and installation, and consultation for the targeted project. Project Support answers questions
about the process, its documentation, and its automation. Based on issues, problems, and future needs
identified by application engineers, Project Support coordinates feedback to the rest of Domain Engi-
neering for improvements in the supported process or products of application engineering. The
Project Support Activity is performed for each work product family in the domain.

1.1 OBJECIVES

The objectives of the Project Support Activity are to:

"* Evaluate the effectiveness and quality of Domain Implementation for use by the targeted
application engineering project

"* Provide customer support to the targeted application engineering project in the understanding
and use of Domain Implementation

"* Provide a conduit by which the needs of the targeted application engineering project can
influence domain improvements and evolution

1.2 REQ•umD INmOmAON

The Project Support Activity requires the following information:

"• Domain Definition

"• Domain Implementation

1.3 REQUIR KNOL wGE AND ExpEmIENcE

The Project Support Activity requires domain and software knowledge and experience in:

Opp-143



DE.4. Project Support AMtty

* The methods, practices, and solutions of application development in the targeted project

• Installing and evaluating software products and their documentation

• Assisting engineers and managers in the use of process documentation and automation

2. PRODUCT DESCRIPTION

The Project Support Activity produces no work products. Instead, it is a service activity to the targeted
application engineering project.

3. PROCESS DESCRIP1ION

The Project Support Activity consists of two steps shown Figure DE.4-1. The first, Domain Validation,
is ongoing and must certify each baseline Domain Implementation as it becomes available. The se-
cond, Domain Delivery, is initiated at the beginning of each targeted application engineering project
and continues until that project's termination.

Domain Dmi

Atvt performed once for
each work product family in
the Domain implementation

Figure DE.4-1. Project Support Ro=es

3.1 PROCE•VR

Follow these steps for the Project Support Activity.

Step: Domain Validation Activity

Aecion Certify that baselined, deliverable Domain Implementation for the work
product family will satisfy the targeted application engineering project's
needs, as specified in the Domain Definition (available in future releases).

Inpu • Domain Definition

0 Domain Implementation

AM&/ None
Hai* Review the Domain Plan and Domain Definition from the perspective of

the targeted application engineering project. Ensure that the product and

Opp-144



process needs of the targeted project are properly represented. Advise the
rest of Domain Engineering on the realistic product and process needs of
the targeted application engineering project.

"Perform an independent evaluation of each baseline of the Domain
Implementation as it becomes available. Evaluate whether it properly sat-
isfies and balances the intended mix of general business objectives and
specific application engineering project/customer needs.

" Perform independent validation, including extensive, scenario-based
testing of the (integrated) Product Implementation and Application Engi-
neering Environment portions of the Domain Implementation baseline.
Evaluate the correctness and usability of the Application Engineering
User's Guide as it relates to use of the Product Implementation and Ap-
plication Engineering Environment.

" Attempt to build typical products that reflect realistic project experience
on existing systems in the domain. Identify capabilities or characteristics
of those products that the Domain Definition accommodates but that are
not attainable with the provided Domain Implementation baseline.

0 Evaluate the impact of the Domain Implementation baseline on the
efficiency and effectiveness of the targeted application engineering proj-
ect. Identify improvements in realistic and practical Domain
Implementation usability.

Step: Domain Delivery Activity

Action Deliver Domain Implementation to the targeted application engineering
project, assist with its use, and identify needed product or process
improvements (available in future releases).

Input Domain Implementation

Result None

Heristics 0 Initiate an instance of this activity at the beginning of each targeted
application engineering project; continue this activity until the project ter-
minates.

0 Provide copies of process documentation (i.e., the Application Engineering
User's Guide) to the engineers and managers of the application
engineering project.

* Install the Application Engineering Environment (and subsequent
upgrades), including the Adaptable Components from the Product
Implementation, for project use and check it for proper operation.

* Explain use of the Application Engineering User's Guide for
understanding and performing the process of developing draft application

Opp-14S



DE.4. Project Support Activity

engineering work products. Explain the use of the Application
Engineering Environment as described in the User's Guide.

"Provide consultation services to application engineers as they perform
Application Engineering. Consulting requires extensive domain knowl-
edge to answer application engineers' questions accurately and fully. Con-
sultants should be knowledgeable in all aspects of Domain Implementa-
tion. There also needs to be a core of expert consultants who are
sufficiently familiar with other domain engineering work products to pro-
vide complete, detailed, in-depth information, rationales, and assistance
when complex problems are encountered by a project. In small organiza-
tions, the entire domain engineering team may be called on as a consulting
resource.

" In response to the delivery services provided, application engineers will
identify problems, improvements, and future needs that Domain Engi-
neering should consider for possible action. Some of these ideas will relate
directly to meeting customers' needs while others will relate to how effi-
ciently application engineers can use the process and associated domain
assets. Properly record and communicate these ideas and their motiva-
tions to the rest of Domain Engineering as feedback from application engi-
neering. This is a key part of Project Support and is essential to continual
project responsive improvement of a domain.

3.2 RISK MANAGEMENT

Risk The needs of a particular application engineering project will conflict with a
simple interpretation of prescribed standards and procedures.

Implication The project will be forced to work in conflict with that interpretation and to be
less effective and efficient.

Mitgadon Try to interpret standards and guidelines flexibly so that they best fit the needs
of the targeted project. Be aware of variations in the Process Support,
particularly in environment installation, that support different needs. Tailor
consultation to the targeted project's needs.

Risk Changes in the circumstances of a project may conflict with the previous
interpretation of prescribed standards and procedures.

Impcation The project will be forced to work around obsolete support and will be less
effective and efficient than necessary.

Mitgadon Reconsider the support given to a project whenever circumstances change
significantly. Be prepared to adjust the environment and consulting advice to
fit current needs better.

Opp-146



4. INTERAcTIONS WITH OTHER ACnIVITIEs

4.1 FmDBAcK TO INORMTiON SOURCES

Coniuwy Application engineers are having difficulty using the Application Engineering
process or Domain Implementation to develop draft work products.

SoWIr Process Support Development Activity

Rasponv * Suggest better ways to the project for performing the process within the
prescribed standards.

* Document the nature of the difficulties and suggest improvements in the
prescribed process or in its documentation or automation.

Con*tir= Particular, noncommon customer requirements cannot be expressed in an
Application Model.

Sowire Domain Definition Activity

* Process Requirements Activity

* Process Support Development Activity

Resonsw * Identify unrecognized domain variations that application engineers need.

• Suggest to the project how it can best work around current limitations.

4.2 FEEDBACK FROM PRODUCr CONSUMERS

None

Opp-147



TWhpap WmenmaIlykft bkn

OW1448



AE. APPLICATION ENGINEERING OVERVIEW

1. GErTING STARTED

Application Engineering is a Synthesis process for creating and supporting an application product that
satisfies specified customer requirements. A product is represented by a set of associated work prod-
ucts that result from analysis of those requirements. Application Engineering is characterized by a
comprehensive life-cycle process for the management, analysis, production, and support of a product
as a set of work produus that offer opportunities for reuse.

In an organization practicing opportunistic Synthesis, the Application Engineering process combines
activities that create work products from scratch with activities that reuse existing work products, in
whole or in part, available from Application Engineering Process Support. Activities involving reuse
focus on application engineers resolving standardized decisions relating to the work product to deter-
mine whether members of existing work product families will satisfy Application Engineering needs.
Based on these decisions, application engineers obtain useful work products from Application Engi-
neering Process Support and tailor them into work products that completely meet customer requirements.

1.1 OBJErvEs

The objectives of Application Engineering are to:

"* Understand the needs of customers, balancing concerns of cost versus value, to produce a
product that fulfills those needs most effectively

"* Organize and direct resources for the production and support of the product

"* Produce software and documentation that support the delivery and use of the product

"* Maximize productivity in creating work products through appropriate use of reusable
components provided by Application Engineering Process Support

1.2 REQUIRm INFORMAnON

Application Engineering requires the following information:

"* Application Engineering Process Support

"* Customer requirements

1.3 R!QuI= KNowzmm A• ExPEmscs

Application Engineering requires domain, business, and software knowledge and experience in:

Opp-1 49



AL App~klinae Enoamtdal Ovaiw

"* The problems that the products in the domain are intended to solve and the engineering
tradeoffs to be considered in creating a viable solution

"* Understanding and interpreting customer requirements and developing applications that

satisfy those requirements

"* The management, production, and delivery of software work products

"* How to use the Application Engineering Process Support to develop an application

"* The information required by the Application Engineering process employed by the project

2. PRODUCT DESCRIPTION

The product of Application Engineering is a set of work products as determined by the process being
followed. Projects use their organization's normal software development process producing familiar
work products. Among the work products that an Application Engineering process might produce are
software requirements documents, software system architectures, and software partitioned into sepa-
rately developed components.

3. PROCESS DESCRIPTION

The Application Engineering Activity consists of a set of activities specific to the software development
process your organization uses. You perform the same set of activities whether or not you practice op-
portunistic Synthesis. Within activities, however, you seek opportunities to reuse existing work prod-
ucts; thus, how you perform activities may differ when you incorporate opportunistic Synthesis into
your software development.

Figure •E-1 shows an ESP-derived and prototypical process for Application Engineering. It is
recog.mable as a conventional waterfall software development process and therefore straightforward
to tailor to the needs of your organization. Reuse within this process is entirely localized to focus on
rapid production of draft individual application engineering work products.

The activities of the Application Engineering process are organized into three classes. (In the ESP model,
activities are grouped into subclasses, and the subclasses are grouped into classes.) The classes are as
follows:

SProject Managemnt. These management and administrative activities support planning,
monitoring, and controlling the project. These activities include the following:

- Plan and initiate those activities required to initially start the project, produce the
project's master plan and schedule, estimate overall cost, and acquire necessary
resources.

- Determine the objectives, alternatives, constraints, and success criteria for a cycle.

- Analyze the risks inherent in the cycle's objectives and suggest risk aversion strategies.

- Produce the Cycle Development Plan which organizes and provides the details for the
activities which will be performed during the cycle.

Opp-so



. ... .......

* a,

.4 a ein Syte a~u~

, 
Ip1

r~wsp rdteciz

~~a~ýuA uumnnqmets

,Prooject'tk adVak~i

~Systemst Arhiec

Crat Somponentsi Sa

Soetware;et

t* Sofwar Requirementsown

Imlmntto Prclc an ot MItrt

*-- - - - - - - - - - - - -

* 6 ArOperation am
aMaianen a n

a a
a ,S

am J•em a ad

--- --a- a ----------------------------------------

*~i E1 A Qeate Componntsoio ' aein Prodct essiainan hdto

* a aS

ii a ai i i*ll l i i l i i liI Ii i i JJ l l i l



AL Applicatio Engwiang Overview

- Initiate the cycle development activities and observe the project's progress and current
status.

" Process Management. These activities manage the technical control and quality of the delivered
product. These activities include the following:

- Define quality standards and ensure that the work products conform to these standards.

- Assess the project's current process, identify areas that need process improvement,
and improve the process.

- Baseline each increment of the product(s) and control any changes to the product(s).

- Control the editing, production, and distribution of project documentation.

- Create and maintain the software systems that the application engineers use to develop
and test the product(s).

- Develop, validate, and administer the training program for the developers and users
of the system.

" Product DeWveopment. Activities in this class specify, design, implement, verify, and maintain
the end product. Product Development consists of the following activities and subclasses:

- Software System EAeing. Activities in this subclass provide the system's specification
and design. It consists of the following activities:

Deine System Requirenens. This activity collects, integrates, specifies, relates,
and organizes the project's needs and objectives to provide the foundation for
system design and implementation. These needs and objectives are expressed
in the system requirements.

Develop System Architectwre. This activity identifies a system-level
architecture, including hardware and software components, that satisfies the
system requirements within budget and schedule constraints. It documents
this architecture in the system architecture.

- SoJftwaeEnginmwng. This subclass includes all activities related to software requirements,
software design, and software implementation:

-- Requirement This activity analyzes the system requirements and architecture
to derive software requirements that further clarify the allocated system
requirements.

-- Arcfth re Design. This activity derives a software system configuration that
performs the required functions at the necessary level of performance and
reliability. This configuration is documented in the software system architecture.

-- Component Dein. This activity refines the software system architecture to
identify the lowest level components and their interfaces. It produces a
detailed design document, the Component Design.

Opp-152



-Crt pmao. This activity develops and documents the source code for
each software component in accordance with the detailed design provided in
Component Design.

Integrate Software Components. This activity integrates the software
components into larger software configuration items through an incremental
process of adding software components to grow the core of software into the
finished system.

- Product Ver(iation and Validation. This subclass includes all activities related to the
verification and validation of the system and software requirements.

-- Verify Software Components. This activity verifies the software components.

-- Verify Software Integration. This activity verifies the integrated software
components up to the final system.

- Operation and Maintenance. This subclass includes all activities related to system
installation and operational support.

Provide Operational Support. This activity provides technical assistance in re-
sponse to customer requests and performs regular maintenance to ensure
that the finished system performs efficiently.

For brevity, this process concentrates on software products, omitting supporting deliverables (e.g.,
user manuals). A complete process would show supporting deliverables and the activities that produce
them.

3.1 PROCEDURE

In this opportunistic Synthesis process, reuse occurs while performing certain Application Engineering
activities-specifically, those yielding work products for which Domain Engineering has implemented
application engineering work product families. Thus, application engineers perform the activities of
the process shown in Figure AE-1.

The way each activity is performed depends in part on whether Domain Engineering has provided
work product families that support reuse within that activity. The consequences of Domain Engineer-
ing support for opportunistic reuse are described in the following five representative steps for creating
a work product. An application engineer performs these steps to create a work product whether or
not ,euse is supported. However, when reuse is supported, application engineers perform these five
steps somewhat differently. The heuristics for each step include descriptions of differences due to
reuse.

Step: Define Success Criteria for the Work Product

Action Determine the success criteria and characteristics that the work product must
have to be considered complete.

Input Required information of the application development process relevant to the
work product. This information would include customer requirements or
appropriate work products from preceding activities.

OppM1 53



AE. Application Engineering Overview

Result Success criteria

Heuristics * Review the company's policies and procedures to determine the
requirements and restrictions relevant to this particular type of work prod-
uct. Define your success criteria as meeting relevant policies and procedures.

" Review customer requirements or appropriate work products from
preceding activities to determine the success criteria relevant to this partic-
ular type of work product. Define your success criteria as meeting relevant
customer requirements.

"* Determine reviewers of the work product who can provide insights and

alternative viewpoints relevant to the work product's subject matter.

Step: Develop Internal Structure

Action Design the internal structure of the work product based upon the needs of the
application engineering project.

Input * Success criteria

* Application Engineering Process Support: User's Guide for the type of
work product

Result Work product's internal structure

Heuristics Select from the work product families (described in the User's Guide) for
an existing family that might directly contribute to this activity's work prod-
uct. For example, if you are producing a requirements specification docu-
ment, search for a requirements specifications document family that could
be used in producing the new specification.

" The internal structure depends upon the work product type. For a
document, this might be an outline; for a plan, a set of milestones; for
source code, an internal design.

"• If you cannot find a suitable member of the work product family, you must
create the structure.

"* Modify or extend the structure to suit specific needs.

Step: Produce the Work Product

Action Produce the work product by filling in its internal structure.

Input • Success Criteria

"* Application Engineering Process Support: User's Guide for the type of
work product

"• Work product's internal structure

Opp-154



AL AppmW= twwgumiv

Reuft Work product

Heuristics • The User's Guide describes a procedure for creating an Application
Model (i.e., Application Modeling). This procedure identifies what deci-
sions to make and how to apply those decisions to select a member of the
work product family.

"• Develop the desired work product by applying the decisions of the
Application Model to select and tailor work product component families
into components that fill in parts of the work product's internal structure.

"* If you cannot find suitable rnmponent family members, you must create

the work product.

Step: Verify the Work Product

Action Verify that the work product meets the success criteria.

Input * Work product

* Success criteria

Result None

Heuristics For each success criterion, determine whether the completed draft of the work
product satisfies the success criteria. If it does not, alter the draft.

Step: Baseline the Work Product

Action Provide a copy to configuration management for baselining. Produce the
necessary reports characterizing the work product and its cost.

Input Work product

Result None

Heuristics Include information in standardized reports characterizing the extent that
work-product reuse occurred. To the extent possible, tell the domain engineers
what kinds of work product components were needed and not found, or will
be needed in the subsequent (follow-on) activities of this particular
application project.

3.2 RISK MANAGEMENT

The risks associated with Application Engineering depend on the specific software development
process followed by the application engineers. Nonetheless, the following risks are (more or less)
independent of the particular Application Engineering process.

Risk Application engineers.will select totally inappropriate (unknown to them)
members of a work product family.

0 pp-155



AE. Application Enginering Overview

Implication Modifying or extending the selected family member so that it suits the
application engineer's needs will be time-consuming, thereby making the cost
of developing a work product more expensive than developing it from scratch.

Mitigaton Have the Project Support staff initially work together with the application
engineers to help them understand how to effectively express their needs in an
Application Model.

Risk Application engineers will inadvertently invalidate certain desired properties
of a family member when they modify or extend the member to suit their
needs.

Implication Work product verification costs will increase because application engineers
will have to perform more extensive testing than normally necessary to ensure
that all properties of the family member are still valid.

Mitgadon Have the Project Support staff available to review the impact of proposed
modifications or extensions not addressed in the User's Guide.

4. INTERACTIONS WITH OTHER ACTIVITIES

4.1 FFEDBACK TO INFORMATION SOURCES

Contingency Application Engineering Process Support does not provide the information
needed to decide which families and which components are useful.
Consequently, application engineers do not find reusable components or
spend excessive time finding them.

Source Domain Engineering

Response • Request immediate (verbal) clarification from the project support staff.

Characterize the additional information needed to assess the reuse potential
of a family and its members. Proceed with the Application Engineering
process using the Application Engineering Process Support to the extent
possible given the inadequacies.

Contingency Application engineers are unable to identify work products, within the

domain, that are relevant to the current application development project.

Source Domain Engineering

Response * Identify what kinds of families need to be developed.

0 Proceed with the Application Engineering process using the Application
Engineering Process Support to the extent possible given the inadequacies.

Contingency The Application Engineering Process Support provided is incomplete or
deficient.

Opp-156



AL Applda Nius, Ovw~w

Source Domain Engineering

Adponse Describe the inadequacies in the Application Engineering Process Support.
Indicate which sections are incomplete or deficient. These may include:
missing work product families, an incomplete User's Guide, errors in the
User's Guide, improperly described Adaptable Components, malfunctioning
generation procedure(s), and bugs in interface software provided by Domain
Engineering.

4.2 F!E=BAcK FROM PRODUCr CONSUMERS

Contingency The customer requests new or modified capabilities for the system.

Source Customer

eonse • Build a new version of the system.

Reject the suggestions as out of scope.

Contingency The customer identifies system anomalies, changes to the target environment,
inadequate system performance, or inadequate reliability.

Source Customer

Re-ponse • Correct system anomalies, accommodate changes to the target
environment, tune the system.

"* Reject changes as out of scope.

"* Ask Domain Engineering to make necessary changes in the domain.

Opp-5 7



AL App&iam Euuwaio Omiw

Thuspage intentiOma1y left blank

Opp-im



PART LEV: LEVERAGED SYNTHESIS



MT, pop intentionally kf blank



OV. OVERVIEW OF A LEVERAGED SYNTHESIS
PROCESS

This part of the guidebook presents a leveraged Synthesis process. This is a process suitable for an
organization that has targeted the goals associated with the leveraged stage of reuse capability, as de-
fined by the RCM. 7b help you understand whether a leveraged process suits your organization, this
section discusses the assumptions that underlie the process and the nature of software development
when using the process.

L UNDERLYING ASSUMPTIONS

The RCM defines four stages of reuse capability implementation and characterizes each stage by a
set of goals. The leveraged Synthesis process described in this part of the guidebook was designed to
fit the goals associated with the leveraged stage as described in the Fundamentals section of the over-
view to this guidebook (Section OV.2). Tb adopt this process, an organization must have targeted those
goals as a minimum. Your organization may choose to adopt the leveraged process even if it has the
potential to attain goals associated with the more advanced anticipating stage of reuse capability im-
plementation. However, this process does not depend upon nor require your organization to attain
any of the more ambitious goals associated with the anticipating stage.

The goals associated with the leveraged stage introduce requirements for a process to be used by
organizations targeting that stage. The Synthesis process described in this part of the guidebook is one
example of a process that an organization targeting the leveraged stage could adopt. It differs from
other such processes because it reflects assumptions about an organization's circumstances that ex-
tend those implied by the RCM goals for the leveraged stage. Section 2.3 in Part Syn of the guidebook
describes characteristics common to all Synthesis processes, particularly that the process comprises
iteratively cooperating Domain Engineering and Application Engineering subprocesses. Additional
assumptions that distinguish the leveraged Synthesis process are as follows:

"A iutud mfa en ad agiae hae mqcuw bwlde ad eqe •ur- & e dmat. This
assumption means that business-area management is willing and able to commit people to this
endeavor who have the needed knowledge and expertise to ensure its success. The people as-
signed are the experts in this business area; they understand both the 'whys' and 'hows' of the
existing systems and work products upon which the domain is based. They also understand the
future of the business area and the organization's objectives for it.

" The rol of Dohmnab ait Is t aouda,* dh puwlice rfAppkadoe E*rhwia. This
assumption means first, that Domain Engineering standardizes the soope of the domain to a
specified product family. Each member of this family is a product (I.e., a software system and
all associated work products) that the orgniation will be able to produce for a given cutomer.



OV. Owview of a Leverapd systathu Pfacm

Secondly, it means that Domain Engieering concurrently engineers a standardized process of
Application Engineering that is tailored to the effective and efficient production of indivdal
products. To the degree that the process can be made more effective or efficient, Domain
Engineering may enhance it with automated support. Business objectives act as constraints
that limit the scope of the domain, making process and product family standardization feasible.

"* Inubiia sandardi Appicadon Fjr&lwftpro requires Domain Eqwi to suppor
projects with automation, , aatn, m and consult. Domain Engineering supports
application engineering projects not only by providing them with appropriate reusable assets
but also by supporting their overall effort to produce a customer product with those assets.
Domain Engineering provides automated support for the prescribed Application Engineering
process; documents the process sufficiently for effective use; provides training in efficient use
of the process; and consults with each project on how best to use the process.

" PRese focuses on system-lewd vaiations in problems and solutions. Standardization of a product
family involves the identification, preferably at the system-level for maximum leverage, of
commonalities and variations that characterize such products. Commonalities provide the ba-
sis for potential leverage but depend on accommodation of variations for sufficient flexibility.
Variations correspond to either problem-level or solution-level decisions that application en-
gineers need to make in order to produce a particular product. The essence of the Application
Engineering process is making and evaluating required decisions and using those decisions in
mechanically generating corresponding work products.

" An e•&ehw domain depnds on conistent obj&e e and sche&dles which requirs coorinaWd
planning and stu4fn ofdomain nginwing and qppcation egiwig projecs. liaditionally, ap-
plication engineering projects have operated autonomously and in isolation from similar proj-
ects. This assumption, in contrast, means that projects are viewed as agents of a domain. Proj-
ects attempt to satisfy customer needs by projecting the capabilities supported by the domain
and stimulating domain evolution when the domain is inadequate. Project staffing comes, at
least partially, by allocation fr' ,m the resources of the domain. Conflicting needs of a project
with Domain Engineering objectives or schedule, or with other projects, must be resolved
through coordinated management of the domain.

" Domain viabit depmed on iaerive domain ewhulon. A viable domain is one that supports
rapid delivery of high-quality products that meet customer needs. Since customer needs are
diverse and changing, as is technology, the domain must evolve to reflect those changes. The
primary insights for domain evolution come as a result of initiation of projects for new customers
and feedback from existing projects.

2. SOFTWARE DEVELOPMENT WITH A LEVERAGED SYNTHESIS PROCESS

This section is a general overview of the leveraged Synthesis process presented in this part of the
guidebook. It gives an overall feel for software development and management as practiced by an orga-
nization with leveraged reuse capabilities, without elaborating every activity or every possile varia-
tion or interpretation of the process. As Figure OV.2-1 in Part Syn depicts, Domain Engineering and
Application Engineering activities, and the interactions between them, are defining aspects of any
Synthesis process. This section describes this leveraged Synthesis process from three perspectives:

Lev-2



OVOFAd aLtiV U hsJ8A*

"* A business-area organization, which encompasses a domain engineering group and one or
more application engineering projects

" Adornain engincering group, which is responsible for process and product family standardization
across a domain

"* An application engineering project, which is responsible for producing and delivering a system
to a particular customer

This section concludes with a brief scenario of how Domain Engineering and Application Engineering
might typically work and interact.

2.1. ORGm••oNAL Pxnsicnw

In leveraged Synthesis, a business-aea organization sets explicit, long-term objectives that direct capital
investment in process and product standardization. The scope of this investment is a family of systems
that represents the strategic focus of the organization. This scope indicates the organization's market,
or customer base, where it expects to find its future business opportunities. Reuse at the leveraged
stage is a key mechanism for attaining strategic business-area or organizational mission objectives.

Within this framework, a domain is the organizational vehicle for all domain-specific software
development which includes both Domain Engineering and Application Engineering efforts (see Fig-
ure OV-1). Domain Engineering focuses on developing, instituting, and evolving effective process/
product standardization suited to the needs of the business. Client application engineering projects
are formed in the domain whenever appropriate opportunities arise to build systems that fall within
the domain's scope. As the organization recognizes changing customer needs or technology, Domain
Engineering evolves the domain to reflect those changes.

The benefit of this approach is higher application engineering productivity, accompanied by more
predictable schedules and costs, more consistent quality in the product, and more rapid responses to
diverse and changing customer needs. Domain Engineering funding will usually come from a com-
bination of organizational capital and client project receipts. The guiding principle is systematic in-
vestment in process/product standardization as a means to leverage expertise and increase productiv-
ity in the delivery of systems to customers. Investments that promise long-term leverage are generally
to be preferred over short-term profits.

2.2. APPLUCAON ENGIDNMRG Pmmcrwv

Application Engineering under leveraged Synthesis is more similar to a prototyping process than to
a conventional software development process, but is oriented nonetheless to producing production-
quality products. Application engineers express customer requirements in the form of a unified model
of a problem and its solution. This model allows application engineers to express the decisions that
they must make, which correspond to supported variations in systems within the domain's scope. The
resulting Application Model is a medium for evaluating the corresponding software product and for
mechanicallygenerating associated work products, including code and documentation, using reusable
components. As requirements are better understood or change, the application engineers modify the
Application Model, reevaluate it, and generate a revised product.

2.3. DOMAIN ENGINERING R

The goal of Domain Engineering under leveraged Synthesis is to provide application engineering
projects with a capability both to create an accurate model of any product that is within the designated

Lav-3



OV. Overview of a Loveraged Synthesis Process

BMusns 0betve Domain hd

Domain -~nern
Domain__

Manaemen Domain Analyis

CoordinatiPlan

cusomer#
Maaeent ku et

Poet II nnni

C lnApplication Imlmntto

L ~ Modeine

S - - - - - -

Deivr an af~

------------------------------------------- ----------

to CUWso

Figur OV-1. Interaction Between Application Enginering and (Simplified) Domsin Engineering

scope of the domain and to generate a valid software system product consisting of all required work
products corresponding to the model. Domain Engineering accomplishes this goal through concur-
rent process and product family engineering for the domain in accrdance with specified domain ob-
jectives. Additionally, this goal requires continual evolution of the domain as customer requirements
and technology change. The challenge is to manage and accomplish this evolution in a timely and sys-
tenmatic fashion. Although existing systems are a valuable source of reusable components particularly

Lev4



when a domain is first being established or expanded, in leveraged Synthesis, the ability to evolve the
domain rapidly as needs change is key to the long-term success of the business.

2.4 AN EXAMPLE SCRENO

As an example, consider a hypothetical process where a business-area organization has established
a domain for one of its business lines. The organization initiates Domain Engineering to formalize the
domain in light of the organization's business objectives and its past experience building systems for
this business. The organization chooses the domain engineering staff to include some of the most ex-
perienced managers and engineers in the organization so that the resulting, concurrently-engineered
process and product family standardization will reflect the best available knowledge and expertise
about the problems to be solved and howvalid solutions are created. Domain Engineering rapidly pro-
ceeds through several iterations in which they achieve a consensus on the scope, commonalities, and
variabilities of the domain, the decisions that application engineers must make to build any particular
system, the requirements, design, and implementation of the supported product family, and the pre-
ferred Application Engineering process and its automated support. The resulting Application Engi-
neering Process Support, including reusable assets, documentation, and automation, is baselined for
subsequent use by client application engineering projects.

When a customer is found who needs a system that fits within the scope of the domain, the organization
forms an application engineering project. The project manager and lead engineer have been assisting
in Domain Engineering and understand the needed system in domain-specific terms. Domain Engi-
neering dedicates some of its project support staff to assist the project in using the domain most effec-
tively. From customer information and discussions, Application Engineering creates an Application
Model that seems to correspond to what the customer needs. Application Engineering evaluates the
model and explains it to the customer. Based on this interaction, Application Engineering discovers
inaccuracies and revises the model. A software product is then generated. Based on reviews and ex-
ploratory use of the product, Application Engineering discovers additional shortcomings, leading to
further revision of the model and generation of a modified product.

In evaluating the model or generated product, Application Engineering discovers a need that cannot
be properly modeled. In consultation with Domain Engineering, they decide that the need is in fact
within the proper scope of the domain and work starts on evolving the domain accordingly. In the
meantime, Application Engineering completes the model and generates a product that approximates
a solution to the understood need. Based on discussions with the customer, Application Engineering
finds a workaround that achieves some of the unmet need and extends the model and product accord-
ingly. When Domain Engineering has completed the agreed-upon domain evolution, Application En-
gineering again revises the model, using the added capability that is now available, to create an
enhanced solution for the customer.

As the organization initiates new application engineering projects or as the needs of existing client
projects change, Domain Engineering revises its consensus on the scope and substance of the domain.
Each revision results in a new baseline of Application Engineering Process Support for use by applica-
tion engineering projects. This evolution continues until the domain is no longer a viable business base.

Lev-5



O.Ov'mvisw of a Lvuigpd Satbssh ?momm

Mhi pope bentionally left blak



DE. DOMAIN ENGINEERING OVERVIEW

1. GETTING STARTED

Domain Engineering is an activity of a Synthesis process that creates and supports a standardized
Application Engineering process and products in a business area. Domain Engineering is a compre-
hensive iterative life-cycle process with management, analysis, implementation, and support activities
for a product family of primary value to a business-area organization.

1.1 OBw rlva

The objectives of Domain Engineering are to:

"* Organize and direct resources to accomplish the business objectives of an organization

"• Define the nature, extent, and substance of a product family that complements those business ob-
jectives

"• Provide leverage by which projects within a domain can deliver a product more effectively,
predictably, and reliably

1.2 REQunD INFORMATION

Domain Engineering requires the following information:

"* Domain knowledge

"* Business objectives

13 REQuIRED KNOWLGE AmD EXPRmNC

Domain Engineering requires domain and software knowledge and experience in:

"• The needs that motivate systems in the domain (i.e., application engineering work products)

"• The environments in which the systems in the domain will operate

"* How the systems in the domain are built

"* How application engineering projects in the domain are managed

Lev-7



DE. Doma &Ennrig Crv.w

2. PRODUCT DESCRIPTION

Domain Engineering creates four work products: Domain Plan, Domain Definition, Domain
Specification, and Domain Implementation. Domain engineers evolve these products in subsequent
iterations of Domain Engineering to support future projects, consistent with organizational business
objectives.

2.1 DoMw4 PLAN

Purpose A Domain Plan (see Section DE.1) describes a plan for domain evolution and
defines the tasks and resource allocations for domain development
increments.

Verification The expected needs of the projected product market in the business area are
Cikria sufficient to compensate for projected costs and risks of domain development.

2.2 DOmAIN DEFINMITON

Purpose A Domain Definition (see Section DE.2.1) defines the informal scope and
orientation that characterize a viable domain.

Varfication The Domain Definition captures sufficient information to allow domain
Cribeia engineers to describe any existing or potential system in the domain.

2.3 DoMAwI SPEcIFICATON

Pupose A Domain Specification (see Section DE.2.2) formalizes expert knowledge of
how to express problems in the domain and how to create corresponding
solutions for the problems.

Vmfcaton The Domain Specification precisely expresses the domain as captured in the
Criteria Domain Definition.

2.4 DoMAn IMPLEMETATON

Purpose A Domain Implementation (see Section DE.3) is an implementation (with
documentation and automated support) of the Application Engineering
process and product family for the domain, as prescribed by the Domain
Specification.

Verfaon The Domain Implementation provides the standardized Application
Criavia Engineering process and product family described in the Domain

Specification.

3. PROCESS DESCRIPTION

Domain Engineering is an interaction among the four steps shown in Figure DE-1.

Lev-8



-IDwNL 0 - do

Domammh owsuw

Bwineu ObjectivesI

Domain Domain
Manageen Defni-o

Plan

Domain

* Domain

S t~ a
-- - - - - -- - - - - - -- - - - - -

to apfcfmFWef
Fiur aE oan niern

3. aRCDR

Folo ahs tp o h oai niern ciiy

Stp aoanMngmetAtvt

A onPan aoioadcnrlteueo oanrsucst rvd
sanadzdpoesadpoutfmlfoadoanoineeto aciv

aeic Deieln-ag n ertr betvsfrabsns ra ranzad
mang aoanrsucst civ hs betvs



DE. Dooimn Enginering Oaivisw

Step: Domain Analysis Activity

Action Scope and specify a domain based on an analysis of business objectives of an
organization.

InW Domain Plan

AM* * Domain Definition

* Domain Specification

Hawisa • Create an informal definition of the domain. Characterize its scope, the
aspects common to all systems in the domain, and the features that vary
across systems in the domain. Explicitly state what is not part of the do.
main. Provide a glossary of common terms. Assess the viability of
supporting each of the aspects you have characterized.

* Precisely specify problems within the scope of the domain. Describe both
common problems and variations in those problems. Specify solutions to
the problems in the domain so that the solutions vary in the same way as
the problems. Specify the standardized Application Engineering process
for building applications in the domain.

Step. Domain Impementation Activity

Acktio Implement the domain as defined by the Domain Specification.

Input • Domain Definition

"* Domain Specification

"* Domain Plan

Raw& Domain Implementation

Heuriut * Implement the product family and process described in th'! Domain
Specification. Incorporate variations into the implementation of the
solutions.

* Create the standards and procedures, in documentation and supporting
automation, that institute a standardized Application Engineering process
as specified in the Domain Specification.

Step: Project Support Activity

Action Support a project in performing the Application Engineering process.

Input Domain Implementation

Heuisics Deliver, install, and support the Domain Implementation for use by projects
in the domain.

Lev-10



3.2 RIsK MANAwGra

AM The products of Domain Engineering (standardization of Application
Engineering products and process) will not lead to standardized domain
practices on projects.

Implication The Domain Engineering investment will not produce projected benefits for
the business organization.

Mitigation 0 Staff the Domain Engineering work with experienced project managers
and engineers. Ensure that all work is actively reviewed by other experi-
enced managers and engineers and is adequately reviewed by all partici-
pants of application engineering projects.

" Evaluate the effectiveness of the Domain Engineering process and work
products relative to past project experiences. Ensure that the characteris-
tics of that experience or the resulting systems are not in conflict with the
process and work products.

" Provide unified management of domain engineering and application
engineering projects. Establish an organizational commitment to the
combined success of all participants.

4. INTERACTIONS WITH OTHER ACTIVITIES

4.1 FEEDBAcK To INmORMAnON SouRcEs

None

4.2 FEmBAcK FROM PRODUCr CONSUMERS

Condiency The standardized product family is inadequate to support the needs of
particular customers.

SoWuce Application Engineering.

Rapone • Determine that expressed needs are outside of or otherwise conflict with
chosen domain objectives or cannot be viably satisfied given available
domain resources.

0 Evolve the domain to accommodate changing needs.

Condigony The standardized Application Engineering process is inefficient or leads to
less-than-ideal results for a particular project.

Soure Application Engineering

P•eonA Determine that the benefits of process standardization outweigh the
interests of the particular project.

Lev-11



DE. Dmains Enomeing Owuviow

* Evolve the definition of the Application Egineerin process to reflect this
project's experience or to be adaptable to the particular conditions of
concern.

Lev-12



DE.1. DOMAIN MANAGEMENT ACTIVITY

1. GETTING STARTED

Domain Management is an activity of Domain Engineering for managing business-area resources to
achieve assigned business objectives. The business-area organization provides resources and direction
for both domain engineering and associated application engineering projects.

Domain Engineering develops and evolves a domain through a series of increments. The Domain Plan
lays out both a master plan for evolution through projected increments (evolution plan) and, as each
increment is initiated, a detailed plan for each increment (increment plan). The evolution plan deter-
mines the nature of the market addressed and how resources are allocated between domain engineer-
ing and application engineering projects. An increment plan determines how domain engineering re-
sources are applied to create an efficient Application Engineering process and a high-quality product
family.

Domain Management monitors domain engineering performance to assess progress, ensure proper
adherence to plans, and guide needed revisions to the evolution and increment plans. A key concern
of Domain Management is coordinating Domain Engineering activities to support the needs and prio-
rities of targeted application engineering projects in satisfying customers' needs and in achieving the
overall objectives of the business area. Domain Management assists the management of targeted
application engineering projects to create plans that ensure optimal leverage from the domain and
to identify enhancements needed by the projects for inclusion in timely increments of domain
evolution.

1.1 OJeCVES

The objective of Domain Management is to manage business-area resources to achieve the
organization's business objectives. Management establishes domain objectives for the organization
to guide the creation and revision of an increment plan for incremental domain development and
evolution. Domain evolution is concerned with the overall trends in the market for the business area
and how resourx, should be applied to best serve the evolving market. The primary concern in plan-
ning for domain •-dlution is projecting the evolution of market need and organizational capability to
meet that need over time.

Each increment of domain development should result in the ability to serve a particular level of
market need. For each increment of development, Domain Management develops a plan to deliver
capabilities that match the needs of targeted application engineering projects. Application engineer-
ing projects are planned in coordination with Domain Management and with an awareness of domain
objectives and capabilities, to meet particular customer needs.

ltv-3



DLL1 DOWia8 IdnaAMeAD A"*vk

1.2 REQUIBM INPORMATlON

The Domain Management Activity requires the following information:

"* Business objectives, specifically the priorities of executive management for business area
development

"* Domain Definition: Domain Status

1.3 RzQUnD KNowmw & ND EXpumiCI

The Domain Management Activity requires domain and business-area knowledge and experience in:

"* The characteristics of the market for the business area

" All aspects of strategic business development and business-area management in the
organization, including how to create a long-range business plan

" All aspects of application project management in the organization

2. PRODUCT DESCRIPTION

Name Domain Plan

PSUpOse Define long-range and near-term objectives and organize and manage domain
resources to achieve those objectives.

ComeNt A Domain Plan consists of three parts:

" Domain EWkuoxn Plam The Domain Evolution Plan defines
long-range objectives for the domain and organizes resources to
achieve them. This plan is strategic in nature and recognizes that both
an organization's capabilities and its opportunities for profitable
business change over time. Not all objectives can be met initially but
must develop in the course of time, in increments that balance
alternative uses of available resources against the potential for return.

" Pracic and Procedure. Practices and Procedures prescribe the
preferred practices and procedures that are to guide the proper
performance of domain development.

" Domain Incweme Plaw. A Domain Increment Plan specifies how to
organize and manage Domain Engineering resources to achieve
near-term domain objectives.

Both the Domain Evolution Plan and the Domain Increment Plans include the
following:

SR*AnabW Identification of uncertainties in meeting allocated business
(for the Domain Evolution Plan) or domain (for a Domain Increment

Lev-14



Plan) objcves, assessment of the risks of failure, and identification of
mitigation strategies.

Objadws. The scope and focus of support to be provided for the
domain or the increment of domain development, reflecting the needs
and priorities of targeted application engineering projects. Scope is in-
dicated by an identification of previously built systems upon which the
domain will be based; focus is indicated by the mix of near-term and
long-term business objectives. Objectives are divided into risk objec-
tives and product objectives. Risk objectives attempt to mitigate risks
identified in the risk analysis. Product objectives establish goals and
success criteria for creating specific work products.

" Schukde. The allocation of domain resources to development increments
that satisfy domain objectives or to activities within an increment that sat-
isfy increment objectives. The schedule establishes specific milestones
and success criteria for domain development increments or for the
activities of a development increment.

"* Issues. A description of issues that arise in performing the plan.

Form and To the extent possible, the form of a Domain Evolution Plan should be the
snxtw' form your organization currently uses: the Domain Evolution Plan should

follow the form used for long-range business planning; Practices and
Procedures should follow the form used for standardizing the practices of
application projects; and the Domain Increment Plans should follow the form
used for application project planning.

Vefcai•on The verification criteria for the Domain Evolution Plan are:

"* The plan must show how near-term objectives contribute to long-range
objectives. All near-term objectives must support long-range objectives.

"* The projected market for products in the business area must be large

enough to compensate sufficiently for projected costs and risks.

"* For the Domain Evolution Plan:

- The plan is complete (i.e., it addresses all business objectives).

- The plan is credible (i.e., it sets forth a strategy that is feasible,
given projected resources).

- Domain objectives are realistic, given the projected availability of
resources and strength of the competition.

- All important risks are identified and addressed.

- Criteria are defined to measure progress against objectives and to
choose among alternative plans or indicate a need for replanning.

Lev-IS



D.L.DoemeM e at Adyq

° Each Domain Increment Plan institutes a plan that seems likely to adileve
the objectives assigned to that Domain Engineering incement by the
Domain Evolution Plan.

3. PROCESS DESCRIPTION

The Domain Management Activity consists of three steps as shown in Figure DF-1-1.

Domain Defintio
Domain St"u

auu 
IT

a 'a '
a S

--
a °

Evadto .Pla

S I
DaomainInstitute ~ Duetce and~ o~~p r

FzWr DP-irDoinangedt ume

longer judged to be economically viable. The Domain Evolution Plan prescribes a series of Domain
Development increments. Each increment is planned and performed Iteratively until its objectives In
the Domain Evolution Plan are met. The Domain Evolution Plan is subject to revision after the
completion of each increment to reflect progress or changing needs of the market or targeted applica-
tion engineering projects and their customers. The step to Institute •,actces and Procedures occurs
before the initiation of the first inacrment of Domain Developzment and is revisited as needed to up-
date the Practices and Procedures to ensure an effective and efficient appro3ach to Domain Engineering.

3.1 PPrcucedre

Follow these steps for the Domain Management Activity.

Step: Domain Evolution

AtIFi Create a plan for Domain Evolution.

lopm • Business objectives

L3.1e6



0Domain Definition: Domain Status

M Domain Plan: Domain Evolution Plan

Hu.bks * Develop a set of domain objectives that will guide you in the long-term
evolution of the domain. Develop a preliminary statement of domain ob-
jectives that expresses the strategic mission of the organization. (Refer to
the heuristics for the Domain Development step for suggestions on a risk-
based management process that you can also apply in performing this
step.)

Develop market projections as a basis for understanding current and
future customer needs to be met. Refine the objectives to match perceived
market opportunities. Consider the following questions:

- What are the critical aspects of your market?

- Who are your customers and what factors are most important to
them in deciding to award contracts?

- What type of products will you produce to address this market?

- Who are your competitors? What are their strengths and
weaknesses?

- What are your strengths and weaknesses?

- How many systems do you expect to produce both in the first year
and as the domain matures?

Describe a strategy for achieving domain objectives. The life cycle of a
domain comprises four phases:

- Conception. A small, cohesive group explores the boundaries of a
domain to establish a viable market basis; project support is not
viable yet.

- Elaboraton. One or a few very similar projects are directly
supported; domain evolution emphasizes needs that are important
to most customers.

- Expansion. Supporting the planned diversity of projects is now
viable; market opportunities drive further domain evolution.

Conolidadon. Little additional diversification is viable; projects
are managed to fit within the supported/variations in domain
capabilities as much as possible.

* Develop a profile of the market to be supported as the domain matures.
Provide details in terms of evolving domain objectives.

Lav-17



DIU. Doman Maenaw, Av

" Develop a profile of the evolution of automation to be developed in
support of application engineeritg projects. Consider the degree of auto-
mation you expect to deploy in support of application engineermn both
initially and as the domain matures.

" Develop a profile of the resources needed to fulfill domain objectives.
Consider both quantitative and qualitative needs in all skill categories.
Project how these resources are to be allocated between domain engineer-
ing and application engineering projects. Consider how resources will be
allocated between domain development and application engineering
projects.

" Define a series of domain development increments, and define objectives,
consistent with domain objectives and allocate them to increments.
Consider the following questions:

- How do you expect the market, your business, and your
competition to change over time?

- What are the long-term risks in developing the domain, and how
will you mitigate each one?

- What are the objectives for the domain, and what are the objectives
of each increment of development that is to achieve those
objectives?

Step: Institute Practices and Procedures

Acion Develop and document standard practices and procedures to be followed in
the activities of Domain Engineering.

Input None

Reuut Domain Plan: Practices and Procedures

Heuwitics Prescribed practices and procedures should encompass administrative,
software development (e.g., requirements and design methods, coding and
documentation standards), project management and control, and quality
assurance (e.g., testing, walkthrough, and review procedures).

* Configuration management procedures are a key element for controlling
iterative domain development. Each iteration of domain development is
represented by one version of each domain engineering work product that
you produce. Feedback on the use of a product version leads to the
creation of a new version in a later iteration of development.

* Consider how consistency and quality standards will be achieved in

domain practices.

Step: Domain Development

Acdon Create a plan for developing a domain increment.

Lev-18



*Domain Evouto ~M

SPractices and Procedures

* Domain Definition: Domain Status

m Domain Increment Plan

u A Domain Development increment consists of repeated cycles through a
process comprised of four steps as shown in Figure DE.l-2. This guidance
assumes you are experienced in project management. Refer to the descrip-
tions of the process model and activities for the ESP (Software Productiv-
ity Consortium 1992b) for a detailed project management method that you
can follow to tailor and elaborate this process.

IEvaluate Risks Abi

Objecties

&huk

F'gue DE.-2. A Risk-Band Pmer for Increment Managemmt

The Domain Evolution Plan identifies the objectives to be met by the
increment. Identify and rank the domain development risks faced by the
organization in meeting these objectives.

Arecurring class of risks that domain development must face is the
near-term ability of targeted application engineering projects to
create required products. Another recurring class of risks involves
how to evolve the domain to meet long-range domain objectives.
Actions to mitigate these risk classes may conflict.

Lev-19



DE.L Domain Manjemont Ativily

- Another important class of risks relates to problems discovered in
previous itei .:ions of the Domain Engineering process.

"Develop a prioritized set of near-term increment objectives that address
the risks identified in the risk analysis. These objectives may be revised, as
Domain Engineering iterates, to meet the Domain Evolution Plan
objectives for the increment.

- A domain-development approach must balance long-term domain
objectives against the short-term needs of targeted projects.

- Each objective should have associated success criteria that are
used to determine whether the objective has been met. The success
criteria should be written in such a way that they are directly
measurable (if possible).

- Objectives are often stated in terms of variations that characterize
systems in the domain or variations to be allowed in the practice
of Application Engineering.

" Develop a schedule that allocates resources to tasks.

- Create specific goals and completion criteria for each task. Each
task is characterized by a Domain Engineering activity to be per-
formed and completion criteria appropriate to that activity. The
full set of tasks must address the near-term objectives within the
resource budget provided. If the resource budget does not allow all
the objectives to be addressed, the objectives with the highest
priority should be addressed.

- Plan for short iterations so that mistakes made in front-end tasks
may be caught and corrected quickly in a subsequent iteration. It-
erations at the beginning of the life cycle of a domain should be par-
ticularly short (three to four months) to compensate for the likely
learning curve in domain concepts.

" Monitor domain engineering work progress to planned milestones and
completion criteria.

- The schedule establishes milestones and completion criteria for
activities that are used to evaluate progress. Whenever new issues
are identified or progress differs from that planned, evaluate
whether to document your concerns for future planning or to
revise the current plan for immediate action.

- Document the source, implications, and possible and actual
resolutions of each issue.

3.2 RISK MANAGEMENT

Risk Domain plans will not be met within schedule with allocated resources.

Lev-20



ScDomain capabilities will fill short of plans.

M• Review plans with experienced engineers to ensure that planned
development is technically viable.

0 Reevaluate domain objectives and replan domain evolution to provide for
shorter iterations that achieve essential capabilities sooner; defer work on
less important objectives.

Risk Market needs will not be met by projected development.

hWncadon Demand for projects will not be sufficient to justify planned investment in the
domain.

Mitigation Review objectives and plans with marketing and major customers to ensure
that market needs are properly represented.

AM Domain engineers resist using standardized practices and procedures.

Implicaion Inefficient operation and employee dissatisfaction will reduce productivity.

Mitigation * Involve domain engineers in developing practices and procedures.

"* Provide education and apprenticeships.

"* Conduct pilot projects that emphasize learning new skills over product
delivery.

M Domain engineers fail to recognize when to terminate an iteration.

IlWmlcadon • There will be excessive detail in products without adequate foundation or
potential benefit.

0 Schedules will slip.

Mitgation Review objectives and completion criteria to make sure they are specific and
understood by the domain engineers.

NA Project needs will not be met by planned development.

hniadon Provided reusable assets will not have sufficient value to targeted projects to
justify costs of the domain.

Mifgation Review objectives and plans with project managers to ensure that the needs of
their projects and the projects' customers are properly understood.

AM Domain plans will not be met within schedule with allocated resources.

Implicaion Domain capabilities will fall short of plans.

Mitigation * Review plans with experienced engineers to ensure that planned
development is technically viable.

ILev-21



DEL. Doanan Manwrwnt Ac*

" Reevaluate objectives and project needs to focus support on key needs of
the targeted projects first; defer work on less urgent objectives.

" Revise the Domain Increment Plan to add or defer activities, or to
reallocate time and resources among planned activities, as priorities
dictate.

4. INTERACTIONS WITH OTHER ACTIVITIES

4.1 FEEDBACK TO IMNOMAMON SOURCES

CONtAY The Domain Definition and/or Domain Specification fails to provide the
needed capabilities required by the Domain Plan.

Seaw= Domain Analysis Activity

Abpe Describe ways in which the Domain Definition and/or Domain Specification
fail to provide the necessary capabilities. Modify schedule to allow completion
of indicated Domain Definition or Domain Specification revisions.

4.2 F•EDIACK FROM PRODUCT CONSUMERS

Ceiuugpq Customer needs are not being met by the domain.

Smme Project Support Activity

RipeW 0 Revise the Domain Plan to accommodate new needs.

0 Determine that needs are incompatible with your organization's business
objectives.

Ceu001vr Project needs are not being met by the domain.

Seem Project Support Activity

Rapte * Revise the Domain Plan to accommodate new needs.

* Determine that the needs of a project are incompatible with the
organization's business objectives and therefore outside the proper
boundaries of the domain.

Con w Practices and procedures are either ineffective or inefficient.

saw= 0 Domain Analysis Activity

"* Domain Implementation Activity

"• Project Support Activity

Rqoe Revise practices and procedures to reflect domain experience.

Lev-22



SThe Domain Plan is too ambitious for available resources or expertise.

SOW99 • Domain Analysis Activity

* Domain Implementation Activity

Ruponm * Allocate additional resources or time to domain development.

* Refine the Domain Plan to reduce the scope.

Lav-23



DEL. Domain Manapmmt ASMi%*

Mh page intntonally kft blnk.

Lxv-24



DE.2. DOMAIN ANALYSIS ACTIVITY

1. GETrING STARTED

Domain Analysis is an activity of Domain Engineering for studying and formalizing a business area
as a domain. The puroose of formalizing a domain is to standardize and leverage knowledge of how
recurring and varying customer requirements affect the form and content of a product. The scope of
a domain is a business decision based on evaluations of available expertise and potential business op-
portunities. Domain Analysis specifies a standardized Application Engineering process and product
family and verifies that a corresponding Domain Implementation meets that specification.

1.1 OD•JWErvs

The objectives of Domain Analysis are to:

"* Determine scope and to evaluate the economic viability of a domain

"* Establish, manage, and evolve a repository of domain knowledge

"* Specify an Application Engineering process and product family appropriate to the domain

1.2 REQUIRED INFORMATlON

Domain Analysis requires the following information:

* Business area knowledge

0 Domain Plan: Domain Objectives

0 Domain Implementation

1.3 REQUmED KNOWLEDGE AND ExpmEwrc

Domain Analysis requires domain and software knowledge and experience in:

"* The needs that motivate systems in the domain

"• The environments in which these systems operate

"* How these systems are built

Lev-25



DELI Domain Amalysis Aiivity

2. PRODUCT DESCRIPTION

Domain Analysis creates two work products: Domain Definition and Domain Specification.

2.1 DomAI D wrrioN

Purpose A Domain Definition (see Section DE.2.1) is an informal description of the
systems in a business area that form a domain. A Domain Definition
characterizes how existing systems, systems being developed in ongoing
projects in the domain, and potential future systems are similar and how they
differ.

Veration The Domain Definition captures sufficient information to allow domain
criw , engineers to describe accurately any existing or potential system.

2.2 DOMAIN SPEc'ATIoN

Purpose A Domain Specification (see Section DE.2.2) precisely characterizes a
product family for the domain and an Application Engineering process for
constructing members of that family.

Verification The Domain Specification precisely expresses the domain as captured in the
Criterta Domain Definition.

3. PROCESS DESCRIPTION

The Domain Analysis Activity consists of the three steps shown in Figure DE.2-1.

3.1 PRoCFmuRE

Follow these steps for the Domain Analysis Activity.

Step: Domain Definition Activity

Acion Characterize the domain to satisfy domain objectives (see Section DE.2.1).

Input Domain Plan

Reu Domain Definition

Heuri*ics Characterize the domain by defining its scope (i.e., classes of systems,
characteristics, or functions included and excluded from the domain) and
how included systems are distinguished from one another. These definitions
are a basis for judging the qualitative and economic characteristics of the do-
main to determine whether the domain as defined will be economically
viable.

Consider how a product for a system is similar and distinguishable from
a product for existing systems.

Lev-26



@ ................

* 'a

Domain ~Domain

a a

DomainObjeDomain

Domain to

*Di " a

uD Domain L Doma
Sterification DmiSpiiaiAti

Input~h Doman Dfintio

----------------------

F•g DE.2-1. Domain AnalySs aoo

*Use this definition as a basis for judgin~g the qualitative and economic
charateristics of the domain to determine whether the domain, as
defined, will be economically viable. If analysis of the Domain Definition
fails a test of economic viability, reevaluate the scope of the domain in
terms of domain objectives.

Step: Domain Specification Activity

Action Specify Application Engineering Process Support (see Section DE.2 2).

'Ibput Domain Definition

AMU Domain Specification

Hewilesc b Create a standard Application Engineering process for the domain.

Ensure that all needs of projects are flexibly supported.

0 Design an Application Modeling Notation for communication of system
requirements and constraints among customers and application eng-
neers. Identify the decisions that an application engineer must make to de-
scribe fully the variations in a system. This notation must accommodate as-
pects appropriate for the product family (such as functional [e~g..
behavioral] and nonfuic~tional aspects [e~g., size, timing, fault tolerance,
hardware architecture, hardware/software configuration]) so that the
application engineer ca adequately express customer requirements. Tis
notation should be based on esisting (formal or informal) notations used
by domain experts.

LAY-??



DE2 Domain Analysis A•ity

" Ensure that the Application Modeling Notation is precise enough to be
used as a source for mapping into exact system solutions. Create standard-
ized requirements for the domain. This description must establish both the
common and variable aspects of the behavior and constraints of product
family members. An unambiguous specification of requirements is needed
so that domain implementors can determine what impact a decision has on a
system. 'Ihis also provides a basis for explaining the notation to application
engineers.

" Create a standardized design for the product family. The design must
satisfy both the common and variable aspects of the product family. A stan-
dardized design includes both design structures that define various views
of the product structure and components from which a product is
constructed to satisfy customer requirements.

Step: Domain Verification Activity

Action Verify the correctness, consistency, and completeness of domain engineering
work products (see Section DE.2.3 for motivation).

Input 0 Domain Definition

"* Domain Specification

"* Domain Implementation

ResAMU None

Heuristics 0 Verify the consistency and completeness of the Domain Definition.

* Verify that the representation of the Application Engineering process in
the Domain Specification is consistent and complete with respect to its
representation in the Domain Definition.

* Verify that the representation of the application engineering product in
the Domain Specification is consistent and complete with respect to its
representation in the Domain Definition.

* Verify that the Product Implementation is consistent and complete with
respect to the Domain Specification.

0 Verify that the representation of the Application Engineering process in
the Process Support is consistent and complete with respect to its
representation in the Domain Specification.

3.2 RISK MANAGEMENT

Risk The cost of an increment of Domain Analysis is projected to exceed the budget.

Implication Insufficient resources exist to complete a planned iteration of Domain
Engineering.

Lev-28



luie * Reduce the current scope.

Seek a change in domain objectives or an increase in the budget for the
increment from Domain M a e

4. INTERACTIONS WITH OTHER ACTIVITIES

4.1 FED&4AC To I•nMnoN SoURcEs

Condhircy The Domain Plan cannot be satisfied with available technical capabilities.

Source Domain Management Activity

esponse Propose (alternative) revisions to the Domain Plan that better match available
capabilities. Complete a Domain Definition and a Domain Specification that
satisfy the Domain Plan as closely as possible.

Condngency The Domain Implementation does not satisfy the Domain Specification.

Source Domain Implementation Activity

Response Clarify the intent of the Domain Specification.

Condneny The practices and procedures specified in the Domain Plan are either
ineffective or inefficient.

Source Domain Management Activity

Reponse Describe the ways in which the practices and procedures are either ineffective
or inefficient. Propose revisions to the practices and procedures to make them
more effective.

4.2 FEDBA•K FROM PRODUCr CoNsUmES

Condticy Suggestions are made for Domain Specification changes to exploit unforeseen
opportunities. For example, a situation where substantial software is made
available for use in the Domain Implementation that was not available when
the Domain Specification was completed.

Source Domain Implementation Activity

Rapone • Revise the Domain Specification.

"* Refer to Domain Management for future planning.

"* Reject the changes due to conflicts with the Domain Definition.

Condtnxy The Domain Definition and/or Domain Specification fails to provide the
capabilities required by the Domain Plan.

Le.29



DE.2. Domain Anablk Activiy

Sore Domain Management Activity

Reau Evolve the Domain Definition and the Domain Specification to be consistent
with the Domain Plan.

Coniuecy The Domain Specification is incomplete, ambiguous, or inconsistent.

seure Domain Implementation Activity

Ras•pw Revise the Domain Specification to correct the inadequacies.

Cengacy The standardized Application Engineering process is inefficient or leads to
less-than-ideal results for a particular project.

S$uaw Project Support Activity

Raesonse • Determine that the benefits of process standardization outweigh the
interests of the particular project.

0 Evolve the definition of the Application Engineering process to reflect the
project's experience or to be adapted to the particular conditions of
concern.

L"v.30



DE.2.1. DOMAIN DEFINITION ACTIVITY

1. GETTING STARTED

Domain Definition is an activity of Domain Analysis for creating a Domain Definition. A Domain
Definition is an informal description of the systems in the business area that form a domain. A Domain
Definition characterizes how systems in the domain are similar and how they differ.

1.1 OnJWcnv

The objectives of the Domain Definition Activity are to:

"• Establish a conceptual basis and bounds for more detailed Domain Analysis

"* Determine whether planned development and evolution of the domain is viable relative to the
organization's business objectives

"* Establish criteria by which management and engineers can judge whether a proposed system
is properly within the domain

1.2 REQuR imromAON

The Domain Definition Activity requires the Domain Plan.

1.3 Rz~unu3 KNowL••s mD ExPERm•Ec

The Domain Definition should be developed by people with a variety of backgrounds in the business
area understudy, including engineering, business, and management experience. Specific expertise is
needed for:

" Broad business-area knowledge: What systems have been built; the nature of systems likely
to be requested'and built; new features and technology that will impact on customer
expectations.

" Broad market awareness: What contracts are forthcoming; what kind of competition there will
be for those contracts; the long-term growth potential of this business area.

" Proposal development experience: What aspects of a system are critical to winning a contract
proposal in this business area.

* System development and management experience: Size, cost, and schedule estimation for
systems in this business area; an intuitive understanding of the technical difficulty and

LcV-31



DI2.1. Dooas Dai62MM A,1iuty

feasibility of a given feature; knowledge of the common areas of confusion or vagueness in
requirements or high-level design; knowledge of the common variations or changes to systems
in this business area over the entire life cycle, including development, installation, and
maintenance.

2. PRODUCT DESCRIPTION

Name Domain Definition

PopoSe A Domain Definition establishes the scope of a domain and a justification of
its economic viability. It provides a basis for determining, informally, whether
a system is properly within that scope.

The Domain Definition does not answer detailed questions of scope, but
dearly includes and excludes broad classes of systems. Assumptions of
commonality and exdusion identify the common features of systems in the
domain, thereby establishing a family. Assumptions of variability identify how
systems in the family are distinguished from one another. Justification
provides a basis for judging technical and economic feasibility and market
potential of the domain to evaluate whether there is sufficient confidence in
the viability of developing the business area as a domain.

Content A Domain Definition consists of the following components:

"* Domain Synopir. An informal statement of the scope of the domain.

"* Domain Glonuay. Definitions of significant terminology used by
experts in discussing needs and solutions in the domain.

"* Domain Amunptons. A description of what is common, variable, and
excluded among systems in the domain.

"• Domain Statra. An assessment of the current maturity and viability of
the domain relative to its planned evolution.

"* L/acy Produ¢t. A representative collection of work products from
existing systems in the product line which may be a suitable source of
information and raw material for developing the domain.

•rikadon 0 Every Domain Assumption must be endorsed for every customer type in
CHMN4 the customer base identified in a Domain Status.

* The needs of all customer types in the customer base must be fully met by
the Domain Synopsis and Domain Assumptions.

2.1 DomtmN SYNp•IS

Purpose The Domain Synopsis is an informal statement of the scope of the domain. It
characterizes systems included in the domain.

Lev-32



DELL Dos De~wi kAg

Cement A Domain Synopsis includes an informal characterization of the systems that
make up the domain.

Foen and A Domain Synopsis is a simple narrative using terms defined in the Domain
Structure Glossary. Example DE.2.1-1 illustrates a fragment of a Domain Synopsis for

the TLC domain. This fragment depicts typical information contained in a
Domain Synopsis and the use of terms from the Domain Glossary.

The Traffic Light Control Software System (MC) domain is a family of embedded computer systems to control the
operation of traffic lights at a given intersection. The TLC domain is limited to controlling traffic at intersections of two
roads with at most one road dead-ending at the intersection. Systems in the 1hC domain control traffic at the intersection
by changing the indicators of each traffic light (called a traffic light sequence). Each traffic light sequence is coordinated
with the other traffic lights in the intersection to prevent accidents while vehides traverse the intersection. Usually, a TLC
system generates its traffic light sequence based on a dock-generated cycle which may last from one (1) to three hundred
(300) seconds. The traffic light sequence generated from the dock may be modified based on signals from optional input
devices.

One optional input device is a trip mechanism buried under the roadway. Atrip mechanism may be associated with either
a left-turn lane, a right-turn lane or a thru-traffic lane. Input from a trip mechanism associated with a left-turn lane
controls whether the left-turn indicator of the traffic light is turned on during a traffic light sequence. A trip mechanism
associatedwitharight.turn signal may actinananalogousmanner fora right-turn signal. Inputs from any tripmechanisms
may alter the traffic light sequence. A trip mechanism is not required for the proper operation of the turn lane.

Another optional input device is the pedestrian crosswalk push button. This input controls whether the wall/don't walk
indicator is on during a traffic light sequence. It may also modify the trafficlight sequence. A push button isnot required
for the proper operation of the pedestrian lane.

Example DE.2.1-1. Fragment of TLC Domain Synopsis

Veriation 0 The Domain Synopsis must give an intuitive feel for the definitive
Cfiteria characteristics of systems in the domain. It should, in itself, adequately

describe any existing or potential system.

0 A term that could have different meanings to different readers may be
used in the Domain Synopsis only if it is defined in the Domain Glossary.

2.2 DOMAIN GossAity

Purpose The Domain Glossary is a compendium of precise definitions for all significant
terminology used by experts for discussing problems (customer needs) and
solutions (systems) in a domain. This domain terminology is organized into a
taxonomy of terms.

Content A Domain Glossary has two parts:

"• A set of standard terms and their definitions

"* A list of references to external sources which define and elaborate on
relevant topics and terminology

Lev-33



DE2.1. Domain Debniaioa Acaivily

Fomu aud A reference to an external source is written using an accepted documentation
Sbnwaai style for a reference (e~g., author-date). Standard terms are defined in

alphabetical order using the following forms:

Te~rm 1 definition (source)

Tbrm 2 (1) first definition (source); (2) second definition (source)

The source of the term's definition (source) is listed after the definition.
Example DE.2.1-2 illustrates a fragment of a Domain Glossary for the TLC
domain. This fragment depicts typical terminology needed to discuss systems%
problems, and solutions in the TLC domain.

Tam Defintion

CrOsinl A specially paved or marked path for pedestrians crossing a street or road.?

Ckinolk Push Button A monitoring device Which allows a pedestrian to signal to the system his presence
at a crosswalk.

1EPUSdianisrn A traffic monitoring device used to determine whether a vehidle as present in a lane.

13 ampCountrol Asynchromized set ottrafflclight sequences specified as afunction oftime and traffic

-oiorn device inputs.

h nLight A set of indicators placed at the intersection of streets to regulate traffic.

Sift Light Cycle One iteration through a traffic light sequence, ie., fr-om the display of the red
indicator through to the next display of the red indicator.

h nLight Sequence Ile order in which aset of traffic light indicators are displayed during a traffic cycle.
¶13pically, this ordering as red, green, amber, but other orderings are possible.

lIE. Monaitoring Device A device that monitors the flow of traffic.

1 wsters Third New International Dictionazy of the English Language UnabridgedL

Example DE.2.1-2. Fragment of TLC Domain Glosary

fr~w~en The Domain Glossary must contain precise definitions of all significant
C*.isterminology used by domain experts for discussing the requirements or

engineering of systems in the domain.

0 Any term used in a definition that could have different meanings to
different readers must also be defined.

Lev.34



" All id terms that are ge li specializations, or
components of defined terms must also be explicitly defined.

"* Terms defined in the Domain Glossary must be sufficient for a domain
expert to give an accurate description of any existing or potential system.

2.3 DOMAIN ASSUMPnONS

PuPOt Domain Assumptions describe what is common to all systems in the domain
and in what significant ways those systems vary and can be distinguished. These
assumptions determine, informally, whether a system is within the scope of the
domain.

C.1dt There are three types of assumptions:

* CommonalityAsmmp•no. A set of assumptions about the characteristics
that are common to all systems in the domain (commonalities).

SVariabi/lyAssumpdns. A set of assumptions about the characteristics
that distinguish systems in the domain (variabilities).

SE lwonmyAsumwpio. A set of assumptions about tae characteristics

of systems that are outside the scope of the domain (exclusions).

Every assumption is composed of a description and justification.

Assumptions may also be elaborated with associated, subordinate
assumptions. For example, a commonality assumption may have specific
variabilities associated with it. Similarly, a particular resolution of a variability
assumption can be thought of as characterizing a subfamily of the product
family. The subfamily then may have additional, more specific commonalities
and variabilities that further distinguish the members of the subfamily.

Form and An assumption description and justification are informal text. Assumptions
sbuaw which elaborate another assumption should be presented in adjacent,

indented text. Examples DE.2.1-3 and DE.2.1-4 illustrate fragments of some
commonality and variability assumptions for the TLC domain. The
justification provides rationale on why the domain engineers believe the
assumption to be valid.

;IPt;n 0 Commonality and variability assumptions must capture all important
Ckhwia aspects that are common to all systems in the domain and the significant

ways in which these systems can vary. Exclusionary assumptions must not
exclude needed capabilities.

"• Systems must only vary as implied by the variability assumptions.

"* Every commonality assumption must apply equally well, without
qualification, to any system in the domaia. Systems must not violate a
stated commonality, either by excluding an included feature in the commo-
nality assumptions or by including an excluded feature in the exclusionary
assumptions.

Lev-SS



DE.2.1. Domain Definition Activity

A TLC system controls the traffic light sequences at an intersection.

JuidjJcde. Thi ptupoe of a TLC system as to control when traffic light sequences dchan, and the
interactions of the traflfic lights at an intersection.

* A TLC system coordinates all traffic lights at an intersection.

Jusi&sdan Safe transit of intersection requires that streams of traffic not row, e.g., east bound traffic
and north bound traffic cannot have geen indiators concurrently.

* The entire week is divided into traffic cycles. The traffic lights at the intersection are synchronized based on
these traffic cycles.

Juttcadlon Traffic patterns and loads vary over the course of a day and of a week. The timing of the
traffic cycles must be varied to deal with the variations in the traffic load.

SATLC system must process signals from a trip mehanism or push button within a specified time.

Jusft 1cadon Smooth traffic flow depends upon the ThC system detecting and responding to requests to
a traffic light sequence in a timely manner.

Example DE.2.1-3. Fragment of TLC Commonality Assumptions

All reviewers must agree that domain experts will consider Domain
Assumptions to be consistent and unambiguous, relative to the definitions
in the Domain Glossary. A term that could have different meanings to dif-
ferent readers may be used in a Domain Assumption only if it is defined
in the Domain Glossary.

2.4 DOMAIn STATUS

Purpose Domain Status describes the current technical maturity of the domain that the
organization has achieved relative to planned evolution, and assesses the
viability of evolution. Of particular concern are unsupported variability
assumptions (i.e., default commonalities).

The Domain Status describes evaluations that establish whether the domain,
as defined, will be economically and technologically viable. Qualitative and
quantitative criteria assess whether current development and future evolution
of the domain will support the organization's business objectives.

Lev-36



D&U.Dam~D~iAb dft

An mtersectm way be famed from to through roads (an X )tersecion, or from we thwr ojad and a
dead-ending road (a T intersection).

Justifkadon The number of roads that can meet at an intersection can vary from intersection to
intersection. At least two roads must cros to have an intersection, but intersections ofthree
or more roads ar common. The marketing department believes that the vast majority of
intersections are of the T and X variety. It has decided to concentrate on this large subset
of traffic intersections.

• The number of lanes of traffic an any road approaching or leaving the intersection may vary. The minimum
number of lanes of traffic is one (1). The maximum number is six (6).

Justification Any road bringing traffic into the intersection must have at least one lane of traffic into the
intersection. Any road leaving the intersection must have at least one lane of traffic from
the intersection. Engineering has determined that the hardware components of the system
cannot control more than six lanes of traffic in a timely fashion.

* Any road approaching the intersection may have a trip mechanism buried under the traffic lanes to alert the
system to the presence of vehicular traffic. There may be no trip mechanism or there may be one (1) per traffic
lane.

Justification The trafficlight sequence may take into account the presence or absence of vehicular traffic
at the intersection.

* The duration of a traffic control schedule will vary.

Jus•'f'xation Thffic patterns and volumes vary from intersection to intersection. Effective traffic control
at these intersections requires schedules that take these variations into account. Traffic
control schedules must also vary to account for differences in system configurations.

Example DE.2.1-4. Fragment of TLC Variability Assumptions

Content The Domain Status is an informal characterization of the degree to which
Domain Objectives are satisfied by past development. It includes the effects
of further planned development.

At a minimum, the Domain Status must include:

* An endorsement that the Domain Synopsis and Domain Assumptions
define economically viable domain.

0 A concise statement that characterizes the confidence (or risk)
associated with this endorsement. If possible, this should include ajus-
tification of the endorsement and a list of major unresolved issues or
risks that may jeopardize the domain's viability.

e.v-37



DE I. Domin Definition Aaivty

Depending on the size of the potential business area and the attendant
commitment to the domain, however, you may need a more detailed Domain
Status consisting of some or all of the following:

" The target customer base. This is a profile of each type of customer
and/or contract that comprises this area of business. Each profile on
the list consists of:

- The name of the customer (or contract) type.

- A short description.

- A list of attributes that characterize this type of customer.
These attributes fall into two categories: technical expecta-
tions and administrative expectations. Technical expectations
are features of the delivered products or the process for devel-
oping, testing, maintaining, or delivering and installing the
products. Administrative expectations are gross cost, profit,
and schedule aspects of a contract.

- A list of specific (potential or current) contracts and/or
customers that fall under this type.

" A grouping of the different alternatives of variability assumptions into
priority subsets. Minimally, there are two subsets: "must have" and
"nice to have." A system of numerical weighting may be desirable.

" A statement of the potential value of the domain. You may need to
analyze alternative scopes of the domain separately. The following
factors express the potential value of a particular scope:

- The size of the potential market (consisting of the target
customer base)

- The planned share of that market

- The projected income from that share

- The expected cost of supporting that market

- An expected profit margin to justify the risk of entering the
market

- A pricing structure for systems to be produced that supports
the cost/profit expectations

Form and The maturity of a domain can be expressed as limitations in satisfying
Structure variability assumptions. Characterize the technical expectations of the target

customer base as the subset of possible alternatives of variability assumptions
that are supported. Risks can be mitigated by imposing limits on variability
assumptions.

Lev-38



Ub *cadon • Every alternative of every domain variability assumption must have an
Criria explicit (or overall group) economic justification from the potential value

analysis and/or an endorsement from the customer base.

The price/capability of systems offered (as supported by the domain value
analysis for a particular domain alternative) must compare sufficiently
well against the perceived capabilities of the competition in this business
area to justify the anticipated profit and market share.

2.5 LEGACY PRODUCrS

Purpose Legacy Products provide access to work products from existing systems that
may be useful sources of information and raw material for developing the
domain.

Content Legacy Products consists of a representative collection of work products (or
portions thereof) from existing systems in the product line to be supported by
the domain.

Form and 0 Work products may be physically stored, on paper or in electronic media,
Structure or may only be identified by reference when sufficiently accessible in this

way (e.g., in an organization's local library or in an accessible repository
set up for another, existing domain).

" Work products are kept in Legacy Products in the form in which they were
produced. Other, consuming activities of Domain Engineering will copy
and excerpt or adapt these work products, as needed, in order to create
reusable assets.

" The work products comprising the Legacy Products are organized in a
suitable manner to provide access by other Domain Engineering activities
to a particular system's work products or to individual work products of a
particular type.

Veriation Each work product in Legacy Products must come from an existing system that
Criteria was determined to be in the domain.

3. PROCESS DESCRIPTION

The Domain Definition Activity consists of the five steps shown in Figure DE.2.1-1.

3.1 PRofCURE

Follow these steps for the Domain Definition Activity.

Step: Define the Domain Informally

Action Create a description of the domain, characterizing key technical objectives of
included systems.

Lev-39



DL2F.m D.mak. Domain Dio

SDomai Plan:Domainobjecine

Defie th DomainDeiiinDoanSops

thomdmain
Synoepsisan yoss otopaea mso itiie n o

ofteDomain i h is aarp.I ofcso h seta aue
Stnarerioope, an aietuyofssesithdman

h t eth Domaty ein th ed mn ol an

0 aa

su Sttu

hoe SUP

inerwt De2ek'be thDomsrainlefnto Proehairtasysessl'it ovn

*eiethe prbemDoumainh Synosito etwpablis, sniiant monstrafintuiiv aondernintsco , a

1"40



how the systems operate in terms of performance, reliability, or distriUtion
concerns.

" Cover the primary functions performed by every system in the domain and
any important functions performed by only some systems. Maintain a
black-box perspective when describing functional aspects of the system.

" Use terms defined in the Domain Glossary to keep the Domain Synopsis
short.

"* If the domain (e.g., process control systems) is based on formal theories
that provide experts with a common language of communication about
problems, refer to those theories in the Domain Synopsis.

Step: Establish Standard Terminology

Action Create definitions of all significant terms used by domain experts in discussing
the requirements or engineering of systems in the domain.

IP9 Domain Definition: Domain Synopsis

Raw& Domain Definition: Domain Glossary

Hewisics 0 Maintain term definitions in alphabetical order for ease of reference.
Provide cross-references to related terms.

"• Use definitions from standard glossaries where possible. Make note of
such sources in each definition for future traceability.

"* Make definitions as precise as possible.

"* Make sure that all terminology used in the Domain Synopsis is defined in
the Glossary.

" Create a structure that shows term specializations and relationships
among similar concepts. This action will reveal missing terms that
represent generalizations or specializations of known terms.

" Create a structure that shows the composition of terms and the
interrelationship of independent concepts in the formation of logical
structures. This will reveal missing terms that are necessary to complete
the definition of other terms or terms that tie other terms together into
more complex concepts.

Step: Establish Domain Assumptions

Action Create lists of the assumptions that allow you to think of the envisioned set of
systems as a family and the assumptions that allow you then to distinguish
among them.

Lew41



DE2.1. Domain Definition MvA"*

I'UP9 • Domain Definition: Domain Synopsis

• Domain Definition: Domain Glossary

Awal Domain Definition: Domain Assumptions

Haw/a, • State only those assumptions that affect the system software and
associated delivered products (e.g., documentation, test support).

* Tb create a preliminary set of assumptions:

- Create a commonality assumption for each characteristic specified in
the Domain Synopsis that is shared by all systems in the domain.

- Create a variability assumption for each characteristic specified in
the Domain Synopsis that is not shared by all systems in the domain.

- For each term in the Domain Glossary, determine whether the term
indicates a commonality or a variability among systems in the
domain. Create an assumption accordingly.

Make variability assumptions precise by indicating the type of decision the
application engineer must make to resolve the variability. It is not suffi-
cient to note only that some characteristic varies. You must establish how
much flexibility the application engineer needs to characterize different
systems adequately.

Elaborate commonality assumptions to uncover specific variabilities
assumptions associated with them. This will more precisely characterize
a subset of the product family.

Elaborate variability assumptions to find more specific commonality and
subsequent variability assumptions that further distinguish members of
the subfamily.

* Compare the characteristics of existing systems to facilitate the identification
of common features and variations.

* Consider characteristics anticipated for future systems to identify
additional variability assumptions.

Look at the maintenance history of existing systems for an indication of
how systems in the domain change over their life cycles. The histories of
these systems indicate likely variabilities that characterize the evolution of
individual systems.

* Use information on technological advancements that could impact the
development of future systems in the domain to identify potential
variations.

Lev-42



"* Distinjuh between N and rnm varlatio
when develont assumptions about varile aspects othe domaim. Meat
a run-time variation that is charateist ic l systems In the domain as
a commonality.

" Use exclusionary assumptions to clarify a domain's boundary. Do not
enumerate every type of system or function that is outside the domain.
Rather, exclude explicitly those functions or characteristics that a domain
expert might incorrectly assume to be part of a system when reading the
Domain Synopsis. Th7us, you can answer the question ofwhether a particu-
lar system belongs within the domain more directly by checking the
exclusions. Exclusions often result from a viability analysis of the domain.

" Uncertainties that arise from analysis of customer requirements are often
a good source of needed variability. These uncertainties are questions that
customers, in the end, must resolve, but must be asked or be given
additional information to be able to do so.

Step: Assess Domain Status

Action Evaluate the technical maturity of the domain in terms of Domain Objectives
and plans for domain development and evolution.

Input • Domain Plan

* Domain Definition: Domain Assumptions

Resdt Domain Definition: Domain Status

Heurics Domain Status must result in an endorsement of and commitment to a specific
domain scope (set of assumptions). This endorsement may come directly from
the intuitions of experienced personnel, or it may derive from a more
extensive, quantitative analysis. Even in the latter case, however, all estimates
and interpretations will rely on the best judgment of senior people. Many of
the following heuristics are couched in qualitative terms to capture the essence
of the decision being made, but you can always augment that decision by the
suggested, optional quantitative analyses.

Determine Marketability

" Are systems of this sort marketable? Look at the Domain Synopsis. The
Domain Synopsis imparts an intuitive feel that it encompasses systems that
the profiled customers will buy. If not, identify what is missing and add the
missing elements to the Domain Synopsis.

" Do the commonality assumptions correspond to the essential needs of the
target customers? Are they really interested in systems that do everything im-
plied by these assumptions, or may the scope be reduced? Conversely, are
features they always require (possibly in variant forms) missing? Change the
assumptions accordingly.

Lev-43



DE.2.I. Domain Defliniion AMaiit

" Do the variability assumptions represent +he real issues that determine
whether a system addresses the individual needs of the target customers?
Are there inconsequential variations (to the target customers) that you can
constrain without losing business? Are there important differences in the
needs of target customers that are not captured in the variabilities? Change
the assumptions accodingly.

" Do expectations of target customers include not only those of the system
end-user, but also the expectations of analysts and decision makers who
influence awarding of contracts? In particular, the administrative
expectations should include items such as allowable contract costs.

Determine Implementability and Risk

" A straightforward way to reduce the number of variations supported is first
to decide what customers (or customer types) must be retained for viability
of the business. Then determine must-have and nice-to-have variability al-
ternatives for each of these customers. The aggregation of the must-have
alternatives determines the minimal scope of your domain. Now you can
consider all other proposed variability alternatives with regard to their
incremental value added.

" Determine whether your organization has a good understanding of the
problems such systems are intended to solve, compared with your competi-
tion, and whether your organization has authoritative expertise that will be
committed to developing this domain.

" Determine whether your organization can build such systems. Consider
whether it has built such systems in the past. Consider the success of such
prior experience with particular regard to demonstrated mastety of the
relevant software technology.

" If particularly diffcult technical issues arise, determine which Domain
Assumptions are affected. Ifyou can reduce a high technical risk at the cost
of removing or constraining an assumption, consider how much domain
value is lost by this reduction in scope and risk.

" Calculate a range for estimated system cost, potential market, anticipated
income, and the like, representing your best- and worse-case expectations,
since good estimates are typically hard to come by and are speculative in
nature.

Step: Identify Legacy Products

Acdon Identify existing systems in the product line that are considered representative
of the domain and whose work products may prove useful as sources of
information and raw materials in developing the domain.

Input * Domain Synopsis

Lev-44



• Domain Assumpti

SkDomain Definition: Legacy Products

Hati gics 0 Use the Domain Synopsis as a guide to select existing systems that are
within the domain (or subsystems that would be parts of such systems).

* Based on Domain Assumptions, identify work products (or fragments, if
appropriate) from these systems that reasonably satisfy some or all of the
Domain Assumptions.

0 Create a brief description of the selected systems and work products as a
guide to their use as a source of information and raw materials by other
Domain Engineering activities.

3.2 RjSK MANAGEMENT

Risk There is a lack of critical expertise.

Implication The Domain Definition cannot be completed or there is unacceptably low
confidence in the results.

Mitigation • Commit time and resources to acquiring the expertise.

* Restrict Domain Assumptions sufficiently to reduce the need for expertise.

Risk The scope of the domain may be too narrow, precluding useful variations.

Implicadon • Opportunities for additional projects are lost.

& Application engineering projects miss opportunities for reuse.

Mitigaon Review the Domain Definition with management, experienced engineers, and
potential customers to identify additional variations.

Risk The scope of the domain may be too broad.

Implication Resources are misapplied to solve an unnecessarily general problem.

Mitigation Review the Domain Definition with management and experienced engineers to
identify under-constrained Commonalities.

Risk Domain Assumptions are too precise or too vague.

Implication Flexibility is reduced unnecessarily, or key decisions are left to the discretion
of domain engineers.

Mitigation Review the Domain Definition with management and experienced engineers
to identify over- or under-constrained Domain Assumptions.

4. INTERACTIONS WITH OTHER ACTIVITIES

4.1 FEEDBACK TO INFORMATION SOURCES

Contingency The Domain Plan iannot be satisfied with available technical capabilities.

Lev45



DLL. Dad einiaA&

Soure Domain Management Activity

PAve Propose (alternative) revisions to the Domain Plan that better match available
capabilities. Complete a Domain Definition that satisfies Domain Objectives
as closely as possible.

C4onigenc The practices and procedures specified in the Domain Plan are either
ineffective or inefficient.

Source Domain Management Activity

Reponse Describe the ways in which the practices and procedures are either ineffective
or inefficient. Propose revisions to the practices and procedures to make them
more effective.

4.2 FEEDBACK FROM PRODUCr CONSUMERS

Condtiaecy The Domain Definition fails to provide the capabilities required by the

Domain Plan.

Source Domain Management Activity

Reponse Evolve the Domain Definition to be consistent with the Domain Plan.

Condngency The Domain Definition is incomplete, ambiguous, inconsistent, or incorrect.

Source • Domain Specification Activity

0 Domain Verification Activity

Rsponse Revise the Domain Definition to correct the inadequacies.

Lev-46



DE.2.2. DOMAIN SPECIFICATION ACTIVITY

1. GETTING STARTED

The Domain Specification Activity is an activity of Domain Analysis for creating a Domain
Specification. A Domain Specification is a precise characterization of the product family denoted by
a domain and of a process for constructing members of that family.

The product family is characterized from two perspectives: how problems are stated and how solutions
are structured. Problems are expressed in the form of a requirements specification. Solutions are ex-
pressed in the form of a standardized design. Both forms are adaptable to anticipated variations in
problems and solutions.

1.1 OJECIIn

The objectives of the Domain Specification Activity are to:

"* Create a precise specification of the problems and solutions supported by the domain

"• Define an Application Engineering process that is suited to the needs of building a product
in the domain

1.2 Rl•mum INFORMATION

The Domain Specification Activity requires the Domain Definition.

1.3 Rl•QUnt KNOWLEGE MD ExPERMEFC

The Domain Specification Activity requires domain and software knowledge and experience in:

"* The process that projects in the organization use to construct an application engineering work
project

"* How systems in the domain are constructed, including the issues that application engineers
must resolve to create a particular system

"* The concepts and structures that are convenient forms by which to communicate about the
distinguishing features of systems in the domain

"* The principles and use of appropriate software product development methods

L"v47



Da2± Dcm k ,d Ac&

I PRODUCT DESCRIPTION

Nem Domain Specification

PWajMW The Domain Specification is a specification for a product family and an
associated Application Engineering process for producing members of the
famfly.

Coat. A Domain Specification consists of one of each of the following components:

"D-i~we ModaL A Decision Model identifies the application
engineering requirements and engineering decisions that determine
how members of the product family can vary (see Section DE2.2.1).

" Product R- -- euuu. Product Requirements determine the behavior
and operational characteristics of problems solved by the product
family (see Section DE.2.2.2).

"* PrcesRequkwuna. Process Requirements determine how Application
Engineering is performed and which work products are produced as a
result (see Section DE22.3).

" Product &wign. A Product Design determines the structure and
composition of solutions provided by members of the product family
(see Section DE.22.4).

Vefcadon • All aspects of the Domain Definition are accurately captured in the
Critvia Domain Specification.

* Existing or envisioned systems can be described in terms of the Domain
Specification. No systems exhibit behavior not indicated in the Domain
Specification.

3. PROCESS DESCRIPTION

The Domain Specification Activity consists of the four steps shown in Figure DE.22-1.

3.1 PfocimnuE

Follow these steps for the Domain Specification Activity.

Step: Decision Model Activity

Acdion Define the set of requirements and engineering decisions that an application
engineer must resolve to select an instance from a designated product family.

Input Domain Definition

ReUt Decision Model

LCv-48



Domai

Deinao

------ -- -- -Ia-- - -- - ----- - -- - -----

Deiso Moe
Reqiram

Pr S

I Iiemnt

Prouc
Riqur at

prouc
a Senst

* Sq

Prdc Deig

Prouc
Desig

-- - - - - - - - -- - - - - - - - - -- - - - - - - - - - - - - - -

Doa InkmaInw

a~d Vvabao

Fiur aE2-.Dmi peiiainPo

Heri* 0 eietedcsosta edt axe ifrne mn h ebr

of th Ii

" eiinM dlfrapoutfaiysol elc h eiin tat
aplcto enieraa omk hn raigsc rdcsi
prviu prjcs

"a TeDcso Moefoaprdc mlshudrfettevrablt

asupin frmteDmi eiiin

L"-a



D•E.2. Domain Spedficaios Aldv*

" Ensure that supported decisions are sufficient to distinguish each existing
product from other members of the family.

" Identify logical relationships among the decisions that characterize a
product family and use them to structure the Decision Model. Such rela-
tionships can reduce the number and complexity of separate decisions that
application engineers have to make.

Step: Product Requirements Activity

Action Specify the behavior and operational characteristics of problems solved by the
product family.

Input * Domain Definition

* Decision Model

Result Product Requirements

Heursic"s Create a software requirements specification for the product family.

* To the degree that application engineering decisions change work product
content, describe how content varies with respect to those decisions. This
description will provide a partial basis for explaining the meaning of
decisions to application engineers.

Step: Process Requirements Activity

Action Specify a standardized Application Engineering process.

Input • Domain Definition

* Decision Model

Result Process Requirements

Heuristics * Define the work products, activities, and process of Application
Engineering.

• Develop the form and structure of the Decision Model as presented to the
application engineer.

Step: Product Design Activity

Action Define the design (i.e., composition and structure) of the members of a
designated product family.

Input * Decision Model

• Product Requirements

Lev-50



DE22. Dmkina -wado Ac&

Domain Definition: Legacy Products

Result Product Design

Heuristics Create a design for the product family, including a design for each required
work product. An annotated outline is one model of a Product Design for
a document work product. An information hiding structure and process
structure from the ADARTS@ (Software Productivity Consortium 1993)
design method are models of a Product Design for a software work
product.

A key element of domain knowledge is how existing instances of the
designated product family are designed. When feasible, derive the initial
Product Design for a family by extracting the design essentials of existing
instances. Ensure that the composition and structure of existing instances
are appropriately reflected in the design.

To the degree that Application Engineering decisions change work
product composition and structure, describe how composition and struc-
ture vary with respect to those decisions. This description will provide a
further, but still partial, basis for explaining the meaning of decisions to
application engineers.

3.2 RISK MANAGEMENTrr

Risk The Domain Specification does not accommodate a product ' mily that meets
the needs of the building products in the domain.

Implication The domain will not provide sufficient opportunities for building unforseen
products.

Mitigation Compare previously developed systems that should be within a product family
with expected needs of the domain. Check that likely differences are
accommodated.

4. INTERACTIONS WITH OTHER ACTIVITIES

4.1 FEEDBACK TO INFORMATION SOURCES

Contingency The Domain Definition is incomplete, ambiguous, or inconsistent.

Source Domain Definition Activity

ReTonse Describe the inadequacies in the Domain Definition. Proceed with Domain
Specification, and document any assumptions made regarding the inadequate
portions of the Domain Definition.

Contingency The Domain Plan cannot be satisfied with available technical capabilities.

Lev-51



DE22. Domman spedcn Ar• riy

Source Domain Management Activity

Repone Propose (alternative) revisions to the Domain Plan that better match avaiable
capabilities. Complete a Domain Specficatio that satisfies the Domain Plan as
dos* as posue.

Contingency The practices and procedures specified in the Domain Plan are either
ineffective or inefficient.

Source Domain Management Activity

Response Describe the ways in which the practices and procedures are either ineffective
or inefficient. Propose revisions to the practices and procedures to make them
more effective.

4.2 F)EEBACK FROM PRODUCr CONSUMERS

Contingency Suggestions are made for Domain Specification changes to exploit unforeseen
opportunities. For example, a situation where substantial software is made
available for use in the Domain Implementation that was not available when
the Domain Specification was completed.

Source Domain Implementation Activity

Response * Revise the Domain Specification.

"* Refer opportunities to Domain Management for future planning.

"* Reject the changes due to conflicts with the Domain Definition.

Contingency The Domain Specification fails to provide the capabilities required by the
Domain Plan.

Source Domain Management Activity

Response Evolve the Domain Specification to be consistent with the Domain Plan.

Contingency The Domain Specification is incomplete, ambiguous, inconsistent, or
incorrect.

Source • Domain Implementation Activity

0 Domain Verification Activity

Response Refine the Domain Specification to correct any inadequacies.

Contingcy The standardized Application Engineering process is inefficient or leads to
less-than-ideal results for a particular project.

Source Project Support Activity

Lev-52



Ilqromu Determine that the benefits of process standardization outweig the interests
of the particular project. Evolve the Application Engineering process to reflect
this project's experience or to be more flexible under the particular conditions
of concern.

Corndnecy Supported product family (as represented by its constituent work product
families) is not useful for a particular project.

Sowure Project Suponrt Activity

Rponse 0 Determine that the nature of the problem and the consequent costs of
upgrading the product family outweigh expected benefits to the particular
project.

0 Evolve the domain engineering work product family to reflect this projects
experience or to be more flexible under the particular conditions of concern.

L"v-53



Thwi page mtenmionaJý lft blank

Lev-54



DE.2.2.1. DECISION MODEL ACTIITY

1. GETTING STARTED

The Decision Model Activity is an activity of the Domain Specification Activity for producing a
Decision Model. A Decision Model defines the set of requirements and engineering decisions that
an application engineer must resolve to describe and construct a deliverable application engineering
work product. A Decision Model is an elaboration of a domain's variability assumptions and is the
abstract form (i.e., concepts and structures) of an Application Modeling Notation for a product family.
These decisions, and the logical relationships among them, determine the variety of products in the
domain. To construct a product, these decisions must be sufficient to distinguish the product from all
other members of the family. The decisions establish how work products of application engineering,
including software and documentation, can vary in form and content.

1.1 OjcrVE

The Decision Model Activity defines a set of decisions that are adequate to distinguish among the
members of an application engineering product family and to guide adaptation of application
engineering work products.

1.2 REQURED INFORMATION

The Decision Model Activity requires the Domain Definition.

1.3 REQUIRED KNOWLEDGE AND EXPERIENCE

The Decision Model Activity requires domain and software knowledge and experience in:

"* Conceptual modeling skills similar to those needed to create a database conceptual schema;
see, for example, Kent (1978) and Borgida (1985)

"• The issues that experienced engineers resolve when constructing systems in the domain

2. PRODUCT DESCRIPTION

Name Decision Model

Purpose A Decision Model specifies the decisions that the Application Modeling
Notation must allow an application engineer to make in describing a system

Lev-55



DF..2..1. Decision Model ctivity

in the domain. These decisions determine the extent of variation in form and
content that is possible in the work products that compose the products in the
domain.

lb interpret fully the effects of decisions (i.e., to understand all properties of
the family member identified by a set of decisions) requires both a Decision
Model and a Product Requirements. The Decision Model specifies only the
variations among members of a family. It does not specify their common
properties. Product Requirements state the common properties, plus the
effects of the decisions in a Decision Model.

Content The Decision Model work product consists of three components:

"* Decision Specwkcatons. Specifications of the set of decisions that suffice
to distinguish among systems in the domain.

"* Decision Groups. A structuring of the decision specifications into
logical groups, based on domain-related criteria.

"* Decision Contraints. A set of constraints on the resolution of
interdependent decisions.

Fonn and A Decision Model can be represented by one of the following forms:
Sructime

"* List of questions

"• Thbular format

In the question-list format, each decision is phrased as a question and a
non-empty set of valid answers. The question identifies the decision that an
application engineer must make. The set states all permissible answers to that
question.

In the tabular format, each horizontal row in the table expresses a decision
specification. The horizontal row is divided into columns. A column identifies
either the decision that an application engineer must make, the permissible
answers for that decision, or a brief description of the decision.

Each decision and each decision group must have a unique identifier. Domain
engineers use this identifier when they define adaptable work products. Each
decision group has one list or table that is labeled with a mnemonic
appropriate to the group. The group is a set of related decisions. Each entry
is an independent decision that has its own distinct mnemonic label, a
specification of allowed values that can resolve the decision, and a short
explanation of the meaning of the decision.

If a set of related decisions is always resolved as a unit, you can define the set to
be a composite decision. Composite decisions are shown in tabular form using a
combination of the composite of indicator and indentation. If the application
engineer can choose to resolve one (and only one) decision from a set of

Lev-56



alternatives, you can define the set to be an altenative decsion. Altnative
decisions are shon in tabular form ushg a combination f the altrnative of
indicator and indentation.

You can also use a tabular format to specify constraints on decision making.
Decision constraints may be either structural or dependency. In both cases, a
decision group (the Decision Group column) is specified as the focus of the
decision constraint. A striactural constraint is a decision constraint that limits
the number of instances of a decision group in an Application Model. Valid
entries include exactly-one, one-or-more, zero-or-one, zero-or-more, and
one-for-each X, where X corresponds to other identified decision groups. A
dependency constraint is a decision constraint that specifies how decisions
made by an application engineer affect subsequent decisions.

Example DE.2.2.1-1 illustrates a fragment of a Decision Model for the TLC
domain. The figure portrays decision groups (e.g., Street, Lane-Group) and
their corresponding decisions, along with appropriate constraints.

Vefcation 0 Every decision must be an elaboration of one or more variability
Crieia assumptions.

* The Decision Model must accommodate all variability assumptions.

3. PROCESS DESCRIPTION

The Decision Model Activity consists of three steps shown in Figure DE.2.2.1-1.

3.1 PtOCEDURE

Follow these steps for Decision Model Activity.

Step: Identify Decisions

Action Identify the decisions that application engineers can make to resolve all of the
variations for a system in the domain.

Input Variability assumptions

Resu Decision specifications

Heuristics * Derive decisions directly from variability assumptions. You must have (at
least) one decision for each variation specified in the assumptions. You will
likely derive multiple decisions from a single variability assumption; each
decision is an elaboration of some aspect of the basic variability.

* Keep in mind that the relevant decisions are those concerning system
generation time, rather than run-time variation. If you followed a similar
heuristic in identifying Domain Assumptions, run-time decisions should
not be an issue here. Your focus now should be on how members of a prod-
uct family differ, rather than on ways in which a member varies its behavior
at run-time. However, if members of a product family have variable run-
time behavior, then a valid decision may concern whether or how a
particular member varies its behavior.

L-v-57



DL2.2.. Decision Model AaMty

lhffw Light Controllcr. composed of
Schdulej. onm of (Frhad _Schedule. Prop~wammb) {deaignate the type of traffic lWh sequenc scheduiling

the ILC rs~tem must accommodate)
Geonicur. one of {Iwtmiection 91000shy)

X list lenth 4 of Street (atreet cdarawierfic for sanX intersection)
T. list length 3 of Street {stret diarsauwitics for a T kierseetiesa)

Find Schedule- composed of
Start -Tume (0:0 - 23.59) Istam tim, for this traffic light sequence, scheduile)
StopTime: (0:00.. 23:59) (stop time for this traffic light sequence schedule)

Street: composed of
Name: identifier I street name)
Right ibMNRLanes: LaneGrou dIcaracteristics for UNe right-hiand turn laneis)
I.eft brii-a.DeS: Lane Group dIcaracterkisti for UNe left-hand turn lanes)
ThroughLanes: LaneGroup {characteristics for UNe through lane)
Pedestrian Crosswalk: one of (Xwalk NOýXwalk) (designates UNe presnc of a pedestrian crosswalk

for this street)
Crosswalk Button:* one of (CB, NOýCB) {designates UNe presence of a pedestrian aroswmalk

pushbutton for this shreed)

LaneGroup:- composed of
Number of Lanes: numeric(1..2) (numnber of traffic lanes in this LaneGroup)
Sensor. Zoneof (Sensor, NOý_Sensor) I{indicates whether there is a traffic monitoring

device for each lane in this Lane Grou0%p)

Project Information:~ composed of
Namne: identifier {namne for UNe TLC system)
Mfnemonic: identifier fTLC system mnemnic)ne

Constraints
- The number of through lanes for Street(l) must be UNe same as for Street(3).
- There can be at most 4 different schedules in the Fixd Schedule.
- A Throughanes group must be specified for each Street.

Example DE.2.21-1. Fkagnmet of TLC Decision MOde

*If a variability assumption asserts that a certain characteristic of systems
in the domain is variable without saying exactly how it varies, you must de-
termine exactly how the characteristic can vary. Specify the precise type of
information that will resolve a decision.

*Avoid routinely providing decisions that dictate arbitrary implementation
limits (e.g., maximum number of users) unless those limits reflect a policy
decision. Optimization of a system requires adequate flexibility.

Lev-SS



Da - -

men ae~

' a

Dw~oo

Stepn*a:~ StreeDeWso

Pmddd Deoto androupsbrw

//mri.M• • Each =deision .group shou de r presentaohrnad heieonpto

domain experts. Such concepts usually have recognizable names. A con-
cept may be independent of other concepts, or may be an aggregate con-
cept that unifies other simpler concepts. In other words, a decision group
may include both individual decisions and decision groups as elements.

Structure the set of decisions based on the principle of separation of
concerns (Dijkstra, Dahl, and Hoare, eds. 1972). For example, create a de-
cision group for decisions that correspond to features of a single,
physically-distinct entity.

Group together mutually-dependent decisions, i.e., those that are unlikely
to change independently. Domain experts often rely on a single concept
that tdes dependent decisions together.

Group together decisions that repeat. For example, if you need to describe
multiple types of a particular device, the engineer may make similar

Lv-59



DE22.1. Dedsa n Model AaMty

decisions for each type. You can group these decisions to create a single
concept as a focus for decisions.

"Group together decisions if they are derived either from a corresponding
single variability assumption or from separate assumptions that were
grouped in the Domain Definition. A single assumption that motivates
several decisions often represents a single concept, while assumption
groupings often suggest how domain experts organize their thoughts about
such systems.

" The principles of database schema normalization form a valid model for
this step. As is the case with normalization, the goal here is to identify and
organize a set of concepts without redundancy or inconsistency.

"• Define explicit logical connections between the decision groups. These

define the relationships between the decision groups.

Step: Identify Decdisi Constraints

Action Define structural and dependency constraints that limit how decisions are
resolved.

Inpvt Decision groups

Remut Decision Model

Heuristics * Define a structural constraint for each decision group; specify limits on
when the group can validly occur in an Application Model.

"* Define a dependency constraint whenever one decision narrows the
resolution that the application engineer can provide for another decision.

" You may sometimes create decision groups where the cross-product of the
decision specifications implies family members that do not exist. You
should examine existing systems and specify constraints that omit these
members from the Decision Model.

3.2 RIsK MANAmIENT

Risk The Decision Model is inadequate for descriptions of intended systems.

Implication The domain will not provide effective support for planned projects.

Mitigation Try to describe one or more existing systems in terms of the Decision Model.
Review these descriptions with experienced engineers to identify erroneous
assumptions or unacceptable limitations.

Risk The decision space is too large or complex.

Implication Effort required to develop the Decision Model and subsequent adaptable
work products will exceed a reasonable level.

Lev-60



M'tig&i • Focus on a set of well-understood decisions and make the assumption,
explicitly, that the other decisions have fixed values (i.e., temporarily
constrain them to be commonalities). Plan to relax these assumptions in
subsequent iterations, or, in extreme cases, suggest that the Domain
Definition Activity consider narrowing the domain scope.

Reorganize the decision space to achieve a more effective separation of
concerns.

4. INTERACTIONS WITH OTHER ACTITIES

4.1 FEEDBACK TO INFORMATION SOURCES

Contingency The Domain Definition is incomplete, ambiguous, or inconsistent.

Source Domain Definition Activity

Response Describe the inadequacies in the Domain Definition and suggest appropriate
refinements. Proceed with Decision Model, and document any assumptions
made regarding the inadequate portions of the Domain Definition.

Contingency The Domain Plan cannot be satisfied with available technical capabilities.

Source Domain Management Activity

Response Propose (alternative) revisions to the Domain Plan that better match available
capabilities. Complete a Decision Model that satisfies the Domain Plan as
closely as possible.

Contingency The practices and procedures specified in the Domain Plan are either
ineffective or inefficient.

Source Domain Management Activity

Response Describe the ways in which the practices and procedures are either ineffective
or inefficient. Propose revisions to the practices and procedures to make them
more effective.

4.2 FEwBACK FROM PRODUCr CONSUMERS

Condticy The Decision Model fails to support all the variation described in the Domain
Definition.

Source • Product Requirements Activity

* Product Design Activity

RPsponse Refine the Decision Model to be consistent with the Domain Definition.

Contingency The Decision Model is incomplete, ambiguous, or inconsistent.

Lev-61



DE.2.2.1. Demkw Modl Adwity

SNM • Product Rcquirements Activity

"• Process Requirements Activity

"* Product Design Activity

"* Product Implementation Activity

lPkm.H Refine the Decision Model to correct inadequacies.

CM W" IlThe structure or content of the Decision Model conflicts with domain experts'
conception of an Application Model.

Sewn Process Requirements Activity

lbpROw Refine the Decision Model to support an Application Modeling Notation
acceptable to domain experts.

Lev-62



DE.2.2.2. PRODUCT REQUIREMENTS ACTVITY

1. GETTING STARTED

The Product Requirements Activity is an activity of the Domain Specification Activity for creating
Product Requirements. A requirements specification describes needs that are satisfied by creating an
Application Product. Needs are expressed in terms of the required behavior and operational environ-
ment of an envisioned application. Similarly, Product Requirements is a requirements specification
that is adaptable to the decisions supported by the product family's Decision Model. The Product Re-
quirements describes the set of problems solved by the members of a product family. By applying the
decisions that characterize a particular product (i.e., its Application Model) to the Product Require-
ments, a standardized description of that product is produced. A Product Requirements gives meaning
to an Application Model as a description of a member of a product family.

1.1 OFjsMnvrS

The objective of the Product Requirements Activity is to define the requirements for a product family.
The specification must be adaptable to decisions allowed by the product family's Decision Model.

1.2 REQUIRED INFORMMON

The Product Requirements Activity requires the following information:

"* Domain Definition

"* Decision Model

1.3 REQUIRED KNOwLEDGE AND EXplEn•CE

The Product Requirements Activity requires domain and software knowledge and experience in:

"* The nature, purpose, and use of work products for existing applications

"* The issues that application engineers must resolve in constructing applications in the domain

"• The concepts and structures that are appropriate for describing the behavior and operational
environment of applications in the domain

"° The principles and use of an appropriate software requirements specification method (e.g.,
informal, structured, semi-formal, or formal [Heninger 1980])

Lev43



DE 712.. Produc Requiremcoa Aaiviy

2. PRODUCT DESCRIPTION

Name Product Requirements

P&WpoM Product Requirements specify the requirements of members of a product
family. Product Requirements also define the meaning of an Application
Model created in accordance with the corresponding product family's
Decision Model. You can use the Product Requirements to understand (and
explain to application engineers) the implications of decisions in an
Application Model (which describes the problem solved by an application).

COnten The Product Requirements is an adaptable requirements specification for a
product family. A specification contains four types of information:

0 Concept. An overall characterization of purpose and objectives.

0 Conteo. A characterization of the relevant environment and
relationships within it.

• Content. A characterization of the expressed or contained substance,
meaning or behavior, and scope.

• Constrints. A characterization of limits and demands on context of use
or content.

As a whole, this information is sufficient to characterize each particular
member of a product family as implied by the decisions allowed by the family's
Decision Model.

Form and Product Requirements may be expressed in any well-defined form, for
sbactw example:

"* Structured, informal text

"• Assertions

"* A formal or semi-formal specification

The assertions form of Product Requirements is a set of assertions that
descnibe the (black-box) behavior of applications in the domain. Assertions
may be simple or parameterized to reflect decisions defined in the Decision
Model. Assertions can be structured into a hierarchy to facilitate separation
of coiwerns.

For all forms, parameterization can be used to express the effects of decisions
on Product Requirements. A metaprogramming notation can describe text
substitution, conditional inclusion, and iteration over repetitive decisions.
Example DE.2.2.2-1 illustrates a fragment of a Product Requirements for the
TLC domain. This fragment depicts a portion of the content (e.g., externally
visiblebehavior) and context (e.g., inputs from the environment) of systems in the

Lev-64



lTe sffic light Cato Software System (LC) corolsthe arficliglt squemncfor -imagsmetion. The eets iarlaid
out in the oowing configuration. <Wi fcqIghtC rol =ens X thea>

Streeti

Street4 Street2

Street3
Celse>

Streeti

HStraee

Street3

<endif>

Each traffic light sequence in the inteasetion is coordinated with other traffic lights in the intersection. The intersection
arms have the following characteristic.

<forall streets S in Maffic _Lght Controfler.Geometry>
Street (< S.Name>):

<if S.Right Turn.Lmnes specified then>
- <SXIght_ rn.Lanes.N•n•ofLanes> right turn lanes
<endif>
<It S.Left Turn Lanes specified then>
- <S.Left TurnLanes.Numrof Lanes> left turn lanes
<endif>

<endfor>

<if there exists at least one Street such that Street.CrosswalkButton = CB then>
The Crosswalk-Button device interrupts the TLC system each time the crosswalk button is pushed. The message received
from this device has the following characteristics:

<endif>

The TLC system also has an interface to a real-time clock. The clock is used by the TLC system to determine when to activate
a traffic light cycle (in the absence of any trip mechanisms in the streets) and the duration of each traffic light indicator in
a traffic light sequence. A TLC system also uses the real-time dock to keep track of the current time-of-day to determine
how quickly it must respond to signals received from trip mechanisms or pedestrian crosswalk push buttons.

Example DE.2.2.2-1. Fragment of TLC Product Requirements

TLC domain. This fragment also depicts the use of parameterization (in terms
of appropriate decisions from the product family's Decision Model shown in
Example DE.2.2.1-1) to express requirements that characterize particular
members of the product family. For example, the block of text describing the

Lev45



DE.2.2.2. Product Requirements Activity

message format received from the crosswalk button device is only included in the
Product Requirements when there is at least one Street in the TLC system which
has that device.

CoMMuE. A black-box description for Product Requirements reduces the
tendency to choose software design and implementation solutions
prematurely. By parameterizing the description, it will apply
equally well to all members of the product family. Figure
DE.2.2.2-1 illustrates how an Application Model for a product is
applied to a parameterized Product Requirements to yield a
standardized software-requirements specification for that product.

P1 P2 ... PM
I I I

Application
Inputs outputs Model

+ Decisions

(D1, D2,..., DN)

Product Requirements

I n uOt s

Software Requirements

Figure DE.2.2.2-1. Instantiating Product Requirements

Verification 0 All implicit requirements must be an elaboration of one or more
Criteria commonality assumptions.

"* The Product Requirements must elaborate all commonality assumptions.

"* If decisions that characterize a particular particular system are applied to
the Product Requirements, the result should be a requirements
specification that describes that system correctly.

3. PROCESS DESCRIPTION

The Product Requirements Activity consists of four steps shown in Figure DE.2.2.2-2.

3.1 PROCEDURE

Follow these steps for the Product Requirements Activity.

Step: Define the Concept

Action Describe overall purpose and objectives for the product family.

Input * Domain Definition

0 Decision Model

Lev-66



MProduct

a eieh De .. ,.. Iaeiete Ietf

th •.nUW Contmenmto t upt a

of the roductodmily

a ecieaappiainspros n ocp f prtos o

to
Paoid doui Prodd Impkmenti ont

Domain Vasficasnm

Figure Di2n2.2i .hpduct Requlrements Prooess

ARAUd Product Requirements: Concept

Select a requirements method that best supports an abstract description

of the product family.

*Describe an application's purpose and concept of operations. For
associated documents, descibe objective and proyide an overvew of content.

Examine commonality assumptions to identify additional aspects of

concepts that apply to all members of the product family.

Examine variability assumptions to derive additional aspects of concepts
that distinguish particular members of the product family. Capture these
requirements by parameterizing concept descriptions in terms of the
appropriate decisions from the product family's Decision Model.

ioExamine Legacy Products from the Domain Definition to derive
additional concept requirements that apply to all or some members of the
produc. family. For common concepts, determine whether these will apply
to future members of the product family. Describe variations in concepts
in terms of decisions in the product family's Decision Model. If no such de-
cisions exist, then decide whether you want to extend the Decision Model
to accommodate these requirements variations.

Step: Describe the Context

Action Describe the relevant environment and relationships for the product family.

/n~pW * Domain Definition

• Decision Model

Lev-67



DE.2.2.2 Product Requirements Activy

keult Product Requirements: Context

Hewiais Describe the environment (e.g., devices, connected systems, users/roles)
in which an application operates. Also describe the interface to that envi-
ronment (e.g., inputs from the environment, outputs to the environment).
For documents, describe their audience, expected benefits, and relation to
other work products.

* Examine commonality assumptions to derive additional context
requirements that apply to all members of the product family.

Examine variability assumptions to derive additional context
requirements that characterize a particular member of the product family.
Capture these requirements by parameterizing context descriptions in
terms of the appropriate decisions from the product family's Decision
Model.

Examine Legacy Products to derive additional context requirements that
apply to all or some members of the product family. For common require-
ments, determine whether these will apply to future members of the prod-
uct family. Describe variations in context in terms of decisions in the
product family's Decision Model. If no such decisions exist, then decide
whether you want to extend the Decision Model to accommodate these
requirements variations.

Step: Derive the Contea

Action Describe the externally visible behavior and information content of
apications in the product family.

Input • Domain Definition

• Decision Model

Remit Product Requirements: Content

HUrisi *Define an information model of an application's information content.
Describe the externally visible behavior of an application, including con-
ceptual modes of operation and functions that produce output to the
environment. For documents, identify the topics to be covered.

• Examine commonality assumptions to derive requirements that apply to
all members of the product family.

Examine variability assumptions to derive additional requirements that
characterize particular members of the product family. Capture these
requirements in the Product Requirements by parameterizing content
descriptions in terms of the appropriate decisions from the product
family's Decision Model.

Lev-68



Examine Legacy Products of the Domain Definition to identify and extract
additional common and varying requirements for content For common
content, consider whether these requirements will apply to future mem-
bers of the product family. Describe variations in content in terms of deci-
sions in the product family's Decision Model. If no such decisions exist,
then decide whether you want to extend the Decision Model to
accommodate these requirements variations.

Step: Identify Constraints

Acton Describe limits and demands on members of the product family.

Input • Domain Definition

* Decision Model

Readt Product Requirements: Constraints

Heuristics Describe environmental limits (e.g., reliability and responsiveness of
devices), performance demands (e.g., timing and accuracy goals for inputs
and outputs), and design or implementation dictates (e.g., targeting of
software to operate on particular computers). For documents, describe
any formatting guidelines.

* Examine commonality assumptions to derive additional constraints that
apply to all members of the product family.

" Examine variability assumptions to derive additional constraints that
characterize particular members of the product family. Capture these re-
quirements by parameterizing constraint descriptions in terms of the
appropriate decisions from the product family's Decision Model.

" Examine Legacy Products to derive additional constraints that apply to all
or some members of the product family. For common constraints, deter-
mine whether these will apply to future members of the product family.
Describe variations in constraints in terms of decisions in the product fam-
ily's Decision Model. If no such decisions exist, then decide whether you
want to extend the Decision Model to accommodate these requirements
variations.

3.2 RISK MANAGEmENT

Risk Product Requirements do not capture all Domain Assumptions accurately.

Implication A derived requirements specification will not accurately describe the problem
that the corresponding product family member solves.

M'itgation Create an Application Model for one or more existing systems and derive their
respective requirements specifications. Review the specification with

Lv-69



DE 111 ftducl Req~robets AMd

customers, experienced engineers, and domain experts to identify any
inaccuracies.

4. INTERACTIONS WITH OTHER ACTIVITIES

4.1 FEmBACK TO INFORMATION SOURCES

Co*Ntecy The Domain Definition is incomplete, ambiguous, or inconsistent.

Sorce Domain Definition Activity

Raponse Describe the inadequacies in the Domain Definition. Proceed with Product
Requirements, and document any assumptions made regarding the
inadequate portions of the Domain Definition.

CondngnCY The Domain Plan cannot be satisfied with available technical capabilities.

Source Domain Management Activity

Raponse Propose (alternative) revisions to the Domain Plan that better match available
capabilities. Complete Product Requirements that satisfy the Domain Plan as
closely as possible.

Contingency The practices and procedures specified in the Domain Plan are either

ineffective or inefficient.

Source Domain Management Activity

Raponse Describe the ways in which the practices and procedures are either ineffective
or inefficient. Propose revisions to the practices and procedures that will make
them more effective.

Confingency The Decision Model is incomplete, ambiguous, or inconsistent.

Source Decision Model Activity

Response Describe the inadequacies in the Decision Model. Proceed with Product
Requirements, and document any assumptions made regarding the
inadequate portions of the Decision Model.

4.2 FEEDBACK FROM PRODUCT CONSUMES

Condngency Product Requirements fail to describe a product family that is consistent with

the Domain Definition.

Source Domain Management Activity

Reponse Modify the Product Requirements to be consistert with the Domain
Definition.

Lev.70



COA*bpC&Y Product Requirements are incomplete, ambiguous, or incosistent.

sow= 0 Product Design Activity

0 Product Implementation Activity

Rnp.N Refine the Product Requirements to correct inadequacies.



Thispage intentionally left blank

Lev-72



DE.2.2.3. PROCESS REQUIREMENTS ACTIVITY

1. GETTING STARTED

The Process Requirements Activity is an activity of the Domain Specification Activity for creating
Process Requirements. Process Requirements is a specification of a standardized Application Engi-
neering process for a domain and an associated Application Modeling Notation. A process specifica-
tion tailors and standardizes the activities, methods, and procedures by which Application
Engineering is practiced within a domain. This process replaces conventional, domain-independent
approaches to software development.

As a part of a standardized Application Engineering process, application engineers create an
Application Model that describes a required system. An Application Modeling Notation defines the
form and mechanisms that application engineers can use to describe and evaluate an Application
Model for products in the domain. This notation must be usable by engineers knowledgeable in do-
main concepts and must produce an Application Model that is an accurate model of the resulting prod-
uct. The information content expressible with an Application Modeling Notation for a domain must
be equivalent to the information content defined by the Decision Model for that domain. The
organization and form of the notation, however, are tailored to the needs of application engineers.

1.1 OwEarv

The objective of the Process Requirements Activity is to define a standardized process for Application
Engineering within a domain and an accompanying Application Modeling Notation for creating a pre-
cise description of a required product. The process should be tailored to the needs of the organization
so that established productivity (process efficiency and product quality) goals are most attainable.

1.2 REQunuD ImNoR•M•AoN

The Process Requirements Activity requires the following information:

"• Domain Definition

"• Decision Model

13 REQmunt KNowuGE AmD ExPEUR cK

The Process Requirements Activity requires domain and software knowledge and experience in:

I The conventional life-cycle process of systems in the domain and the role of customers and
standards in that process

Lv-.73



DI.2.23. P=roe RequirenAnActMy

"* How application engineers resolve issues in constructing systems in the domain

"* The concepts and structures that are convenient forms by which domain experts communicate
concerning the distinguishing features of systems in the domain

2. PRODUCT DESCRIPTION

Name Process Requirements

Purpose Process Requirements define a standard process that application engineers
follow to develop and evolve systems in the domain. The process described in
the Process Requirements may be manual or may incorporate varying levels
of automation.

Coena The Process Requirements work product consists of:

" Prcs Sp icai& A definition of the work products, activities, and
process of Application Engineering. For each activity, Process Specifi-
cation describes its purpose, the work products created, and
interactions with other activities.

"* Applicaion Modein Notation Spec•fation. A description of the form
of the Application Modeling Notation. The description of the notation
consists of:

- Presenaions. The form of each set of logically-related
decisions from the Decision Model that application engineers
tend to treat as a unit.

- Smawu . The structure of the Application Modeling Notation,
which organizes Presentations into a decision process based on
dependencies and constraints among decisions.

Form and The Process Specification defines the products, activities, and process of
St&MuuM Application Engineering. Each application engineering work product has a

specified content and form. The form of a product may be defined explicitly
or by reference to customer or industry standards. Each activity of Application
Engineering is described by its purpose, the work products to be created, a
procedure that defines and organizes the steps of the activity, and interactions
with other activities. The Application Engineering process is described as a set
of Activities (e.g., Specify Model, Assess Model) that are to be performed in
a specified (partial) order. Each activity consists of a number of Steps (e.g.,
Specify Platform and Start Simulation). The description of the activity
includes a specification of the order in which steps may be performed. Each
step is specified in terms of a presentation that describes the particular
information the applicaticn engineer sees during that step and a set of actions
that he can perform.

The Application Modeling Notation can be specified as a set of paper or
automated forms that allow application engineers to make requirements or

Lev-74



engineering decisions about the needed product. By completing these forms,
application engineers construct an Application Model for a product. In
addition, the Notation organizes the forms into a network that defines a
sequence in which application engineers can address any particular decision.

The description of an activity in an Application Modeling Notation is written
in terms of a standard presentation paradigm. A presentation paradigm
defines a generic form in which information may be presented interactively
and is conceived as a notational aid for describing the Application Modeling
Notation. Presentation paradigms for simple decisions are textual, graphical,
or iconic. Presentation paradigms for grouped decisions organize simpler
presentations into aggregate (possibly hybrid) forms (e.g., textual, graphical,
tabular).

Vefication • All decisions specified in the Decision Model should be accessible through
Citeria the Application Modeling Notation.

"* The Application Modeling Notation should support only those decisions
that can be expressed in some equivalent way in the Decision Model.

"* The Process Requirements must enforce all of the constraints specified in the
Decision Model.

3. PROCESS DESCRIPTION

The Process Requirements Activity consists of two steps shown in Figure DE.2.2.3-1.

3.1 PROCEDURE

Follow these steps for the Process Requirements Activity.

Step: Design a Process

Action Specify a process for creating and evaluating an Application Model and the
generation of work products from the Application Model. Define the process
by organizing the Presentations defined in the Application Modeling Notation
into activities and specifying ordering constraints and prerequisites that
structure the process. Define the points at which analyses may be performed
and work products may be produced.

Input Domain Definition

Rask Process Specification

Heuristics Identify the deliverables that the Application Engineering process must
produce. This set of products is determined by the needs of customers. The
form and content of each product should be defined in keeping with corpo-
rate, customer, or industry standards, as appropriate. If an adequate stan-
dard is not available for any product, create a standard for your
organization.

1"v-75



DL2.23. Proca R•quiremcnts AtMtvixy

DomtoDomain DeDgoiinIsiona~o

Figure a Process Meng Notass

w a Porks prevtsaotApplication Modess.
Dormed dNotataonessinte

Peesrodc Deignpt, Domaine rnkesutsand poceuen tann hs e

Fiurt.Ientf DE721rocess i Reattiremngcetas l Proesuls aditreedn

"wItheotify addiitioa(ies., Deinetermhecdsatoe peraxiirme) worknh prodctssta
resul spfro thnthe Appliction Engieefrmed. Sproessf.ha is wor productshe

Thupportotes need for quanitaivead toualittvelaaye of detaltallowsryoult
workaiesadr producte and the ApiaonEngineering pateprocense.Foe -

necessryj Managemen, exetdresltsr and Oproedratio Suport atanng thoseige-
sutsaIetify management pattaiines maccptble reulse and iontinlerdpendencies
with othoer ativitis. Dfn h hcst epromddrn hrcs

Craigand Applihteyaretion boel pefomd. singthat Apisation beMonel whe

"crheaewr proesustsl are descriedntoial elevelt of deail thliatialows Engineer

ple, Projcss Msansartinmeont, Deieronsde OpepratiotySuppor, irandcniguA-

plication Engineering process described in Section AE (consisting of
Project Management, Application Modeling, Application Production, and

L"-76



Delivery and Operation Support activities), refined appropriately to the

needs of your projects.

Step: Develop Application Modeling Notation

Acion Organize decisions into a set of presentations in terms of a set of standard
presentation paradigms.

Input Decision Model

P.M* Application Modeling Notaticn Specification

H/ c *Identify a set of presentation paradigms; consider the ways domain experts
generally represent various problem facets in a manner consistent with the
ways decisions are grouped in the Decision Model. Identify a set of para-
digms that are adequate to represent decisions in all the facets of a prob-
lem description.

First, identify presentations by describing each decision group in the
Decision Model as a presentation, then describe the presentation in terms
of allowed decisions and any auxiliary (e.g., labeling, layout) information
required by the appropriate presentation paradigm.

Create the structure of the Application Modeling Notation by considering
how presentations interrelate (derivable from how decision groups in the
Decision Model interrelate). Some presentations may be meaningful only
if accessed in the context of, or in combination with, other related presen-
tations. These relationships determine a reasonable structure for the No-
tation. The ideal structure for an Application Model is one that domain
experts would consider natural and appropriate as a model of a system. Re-
fine the structure by consulting with domain experts as to how decision
making is best organized.

Identify any analyses that the application engineer should be able to
perform on individual presentations and on the Application Model as a
whole. To be most effective, these analyses should provide insights into the
functional and operational characteristics of the described system in terms
of alternative resolutions of decisions, rather than in terms of the details
of generated work products.

3.2 RIsK MANAGEMvE

Risk The Application Engineering process will not meet all of the needs of a project.

Implication Projects will have to modify the process in an ad hoc fashion and work around
incorrect assumptions of the Process Requirements.

Mitigaion Review the process with experienced project managers to ensure that it encompasses
all activities required of a project, those products that customers require, and those

Lev-77



DE.2..3. Process Requirements Activity

products that benefit a projec. Variations in project needs shouil be anticipated and
supported.

RFik The Application Modeling Notation will not be usable by application
engineers.

Implication Application engineers will have difficulty creating valid Application Models.

Mitigation Review the Notation with experienced engineers to ensure that it is
understandable and that it uses terminology and notations familiar to
application engineers.

4. INTERACTIONS WITH OTHER ACTIVITIES

4.1 FEEDBACK TO INFORMATION SOURCES

Contingency The Domain Definition is incomplete, ambiguous, or inconsistent.

Source Domain Definition Activity

Response Describe the inadequacies in the Domain Definition. Proceed with Process
Requirements, and document any assumptions made regarding the inadequate
portions of the Domain Definition.

Contingency The Domain Plan cannot be satisfied with available technical capabilities.

Source Domain Management Activity

Response Propose (alternative) revisions to the Domain Plan that better match available
capabilities. Complete the Process Requirements to satisfy the Domain Plan as
closely as possible.

Contingency The practices and procedures specified in the Domain Plan are either
ineffective or inefficient.

Source Domain Management Activity

Response Describe the ways in which the practices and procedures are either ineffective
or inefficient. Propose revisions to the practices and procedures to make them
more effective.

Contingency The Decision Model is incomplete, ambiguous, or inconsistent.

Source Decision Model Activity

RAponse Describe the inadequacies in the Decision Model. Proceed with Process
Requirements, and document any assumptions made regarding the
inadequate portions of the Domain Definition.

Contingency The structure or content of the Decision Model conflicts with domain expert's
conception of an Application Model.

Lev-78



DF±21.3. Prtcun RequkeemtS AOMVy

Soure Decision Model Activity

Respemw Describe the elements of an acceptable Application Modeling Notation not
supported by the Decision Model.

4.2 FEEDBACK FROM PRODUCr CONSummRS

Conte IlThe Process Requirements violate constraints on the Application Engineering
process established in the Domain Definition.

Source Domain Management Activity

Akponse Evolve the Process Requirements to be consistent with the Domain
Definition.

Contingency The Process Requirements are incomplete, ambiguous, or inconsistent.

Source Process Support Development Activity

Response Refine the Process Requirements to correct inadequacies.

Candigny The standardized Application Engineering process is inefficient or leads to
less-than-ideal results for a particular project.

Soure Project Support Activity

R.s-ponse * Determine that the benefits of process standardization outweigh the
interests of the particular project.

* Evolve the Process Requirements to reflect the generally-applicable
insight of this project's experience or to be adapted to the particular
conditions of concern.

Lev-79



MUM f-." "ft

Mpage intentionally left blank

Le-40



DE.2.2.4. PRODUCT DESIGN ACTIVITY

1. GETTING STARTED

The Product Design Activity is an activity of the Domain Specification Activity for creating a Product
Design. A Product Design specifies the design for product family, rather than for a single product. A
design describes an application that solves a specified problem. Similarly, a Product Design is a design
that varies according to the decisions supported by the product family's Decision Model. By applying
the decisions that characterize a particular product to the Product Design, a standardized design of
that product is produced.

1.1 On mclv

The objective of the Product Design Activity is to create a design for a product family. The product
family's design must satisfy its Product Requirements and must be adaptable to the decisions allowed
by the family's Decision Model.

1.2 RsQunIR INFORMMON

The Product Design Activity requires the following information:

"* Decision Model

"• Product Requirements

"* Legacy Products

1.3 REQumm KNowLEGE AND ExPERmcC

The Product Design Activity requires domain and software knowledge and experience in:

"* The principles and use of an appropriate design method

"• How systems in the domain are designed, including an appreciation of typical engineering
tradeoffs to be resolved

"* The concepts and practice of abstraction-based reuse (Parnas 1976; Campbell 1989)

2. PRODUCT DESCRIPTION

Name Product Design



PNaqW~ A Product Design specifies the design of members of a product family.

CoAtR The Product Design consists of the following parts:

" Prduct Arckltctuw A specification of the internal organization of
each application engineering work product that can be produced for
the family (see Section DE.2.2.4.1).

" Componemt DeiL A specification of the design of each of a set of
Adaptable Components that can be adapted to compose deliverable
application engineering work products for the family (see Section
DE.2.2.4.2).

" , Gemation Dsig. A specification of how a product family's
Application Model is used to select, adapt, and compose Adaptable
Components to create work products that satisfy the Product
Requirements and Product Architecture (see Section DE.2.2.4.3).

Veriation 0 All aspects of Product Requirements are traceable into the Product De-
Criria sign. All variations in Product Requirements have equivalent variations in

the Product Design.

• The Product Design satisfies the verification criteria appropriate to the
specific design method used in creating it.

3. PROCESS DESCRIPTION

The Product Design Activity consists of the three steps shown in Figure DE.2.2.4-1.

3.1 PROCEDURE

Follow these steps for the Product Design Activity.

Step: Product Architecture Activity

Acion Create design structures that characterize the internal organization of
members of the product family.

Input ° Product Requirements

* Legacy Products

ReAMt Product Architecture

Hewist4s ° Create multiple design structures (each portraying a different
perspective) for a product family.

* Ensure that the product family's Product Architecture applies to all
members of that family.

Lev-82



DecisionD

mom p@&-

---- --- --- --- --- ... -- --- ----

*w c Arhtetr

hodaa
a anla

cze an

aM~ af ý owS~aDdpm
a a"

aco raeaCmoetD4pfrec fasto AdpabeCmont

copm apoutfmlasietfebytePdctArhtcuc

ar 0 rdc eqieet

"" Prdc rcietr

"" aeayPout

AM CopnntDsg

HeaisEsr htteCmonn einstsisrlvn aspcso h rdc

Arhtetr an rdc xurmns

a a4



'Z _7 
, 1 7"• ,. • \.•'• . % •. •:

Ste• Gemratton Desip Acdvity

Ad.i Specify a precise procedure of how members of a product family are derived
from Adaptable Components based on the decisions in an Application Model.

Input * Decision Model

"* Product Architecture

"* Component Designs

plault Generation Design

Heuwis * Decide how the decisions for a product family determine the form and
content of application engineering work products.

* Specify the design by describing how Adaptable Components are selected,
adapted, and composed according to the decisions in the work product
family's Decision Model.

3.2 RISK MANAGEMENT

None

4. INTERACTIONS WITH OTHER ACTIVITIES

4.1 FmDcrCK TO ][NORmtnoN SouRcEs

Contigency The Decision Model is incomplete, ambiguous, or inconsistent.

Source Decision Model Activity

Raponse Describe the inadequacies in the Decision Model. Proceed with Product
Design, and document any assumptions made regarding the inadequate
portions of the Decision Model.

Coningency The Product Requirements are incomplete, ambiguous, or inconsistent.

Source Product Requirements Activity

Response Describe the inadequacies in the Product Requirements. Proceed with
Product Design, and document any assumptions made regarding the
inadequate portions of the Product Requirements.

Contingency The Domain Plan cannot be satisfied with available technical capabilities.

Soure Domain Management Activity

ReiponSe Propose (alternative) revisions to the Domain Plan that better match available
capabilities. Complete a Product Design that satisfies the Domain Plan as
closely as possible.

1Av.44



DE-.2A. hodu m AMAly

Congtgency The practices and procedures specified in the Domain Plan are either
ineffective or inefficient.

Source Domain Management Activity

Rasponse Describe the ways in which the practices and procedures are either ineffective
or inefficient. Propose revisions to the practices and procedures to make them
more effective.

4.2 FEEDBACK FROM PRODUCr CONSUMES

Condigency Suggestions are made for Product Design changes to exploit unforeseen
opportunities, e.g., a situation where substantial software is made available for
use in the Domain Implementation that was not available when the Domain
Specification was completed.

Source • Product Implementation Activity

* Process Support Development Activity

Response • Revise the Product Design.

• Refer to Domain Management for future planning.

• Reject the changes due to conflicts with the Domain Definition.

Contingency The Product Design does not satisfy the Product Requirements.

Source Domain Verification Activity

Response Modify the Product Design to be consistent with the Product Requirements.

Confingency The Product Design is incomplete, ambiguous, or inconsistent.

Source Product Implementation Activity

Response Refine the Product Design to correct inadequacies.



Thiwpag inletioaly kft blank



DE.2.2.4.1. PRODUCT ARCHITECTURE ACTIVITY

1. GETTING STARTED

The Product Architecture Activity is an activity of the Product Design Activity for creating a Product
Architecture. An architecture, for a given work product, is one or more design structures that define
the internal organization of that work product from different perspectives. Similarly, a Product Archi-
tecture is a description of the internal organization of a product family. A Product Architecture in-
cludes the architecture of each of the work product families that make up the product family.A Prod-
uct ,Lrchitecture varies according to the decisions supported by the poduct family's Decision Model.
A Product Architecture describes a standardized architecture for all members of a product family in
a domain. By applying the decisions that characterize a particular product to the Product Architecture,
a standardized architecture of that product is produced.

For each required application work product family (requirements, design, code, etc.), one design
structure must identify a set of Adaptable Components. Application engineers compose instances of
these components to create an instance of the work product. Depending on which design method do-
main engineer's follow, they may also create other structures which provide other views of the behav-
ior or interrelationships of components. In all cases, the structures are in an adaptable form so that
Application Engineering can use them to produce any member of the indicated product family.

1.1 OBiJns

The objective of the Product Architecture Activity is to define an adaptable architecture for products
that can be produced in Application Engineering. Product Architecture is the design of solutions to
the problems that Product Requirements describe.

1.2 REQum INORmAnON

The Product Architecture Activity requires the following information:

"* Product Requirements

"• Legacy Products

1.3 REQu-n=D KNowL G AND ExpEammJNc

The Product Architecture Activity requires domain and software knowledge and experience in:

"* The principles and use of an appropriate software design method (e.g., ADARTS [Software
Productivity Consortium 1993])

"* How systems in the domain are designed and documented following chosen design and
documentation methods

Lev-87



"* l•pical engineering tradeoffs that must be balanced when desiping systems in the domain

"• The concepts and practice of metaprogramming (Campbell 1989)

2. PRODUCT DESCRIPTION

Name Product Architecture

POrpOs The Product Architecture describes the internal organization of members of
the application engineering work product family.

Contn The Product Architecture consists of design structures for each appicatim work
producL One of the structures must identify the =oponents that maik up each of
the members of the work product fmily. Each structure consists of

"* A set of design elements

"* A relation that associates elements

For example, a software requirements specification document is one type of
application engineering work product. The domain engineers might choose
sections of requirements documents as design elements, and "subsection" as
the relation among these elements. This describes the structure of a software
requirements specification document in enough detail to allow its composition
from its constituent elements. The structures developed for a particular
domain depend on the particular application work products and the design
method used to produce them.

Although the Product Architecture for a particular product may contain
multiple design structures, there must be one structure that describes the
decomposition of the product into work assignments (e.g., modules, sections).
The elements of this structure correspond to components that are to be
implemented by Adaptable Components.

The only difference between the design structures specified in the Product
Architecture and those specified in a convendonal design is that the Product
Architecture is parameterized and adaptable, so that it descnbes the family of
products in the domain.

Form and The form for each structure of a Product Architecture is a textual or graphic
Stnucomw network of elements and relations. This representation is then augmented

with a suitable technology such as metaprogramming notation to parameterize
the structure for adaptation to variations.

Ekamples DE224.1-1, DE2.2.4.1-2, and DE.2.2.4.1-3 illustrate fragments of a
Product Architecture for the TLC domain (i.e., fragnts of the static software
architecture for the product family, process structure architecture for the product
famy, and an ardctecture for a DOD-SID-2167A Inteac Requirements
spcification document work product famy, reqscve). Multiple structures ar

Iev-4S



DE2.22.4.1. Prodint Arclhitecture Actvity

Product Architecture - Statik Software Architecture t(TLC product family

Instantiation Parameters

crosswalk one of (yes, no) {Pedestrian crosswalk push button. A value ofyes means that
the software information hiding architecture must include
components to support the Pedestrian Crouswalk Push Button.
A value of no means those components are not included.)

schedule owe of (fixed, dynamic) I....
sensor one of (yes, no)

Instantiation Constraints

Exapl D.22A1-. ramet f LCPr~dctArchitecture

needed........ toflydsileteac itecture of the software and documentation for theýý

H ardw ane anoatdouln weeianumee headinn(g.,1 S &qae) iorrson

to a strfe Execindoehdkpout.Peeigec acietr r tedcsosta

DE2..4.-3,Secion .3 illbe ndudeduoly wiedhen>prmtrcosaki re

Otherwise, this setinesomttd

r~endiLev49



DL=.24.1. Pioduct ANMlieWem MSMI

Product Architecture - Process Structure of the TLC product family

Instantiation Parameters

crosswalk one of (yes, no) {Pedestrian crosswalk push button. A value of yes means that
the software information hiding architecture must include
components to support the Pedestrian Crosswalk Push Buttou.
A value of no means those components are not induded.}

sensor one of (yes, no)

Instantiation Constraints

None
Output

/ raffic Light7 gh

Vehicle <If sensor = yes then>

detected 7 TSefincLigrt ....
by sensor Controller

<endif>

Button Pushed -- ,L<lCrosswalk=yethn

<endif>

"TIner Event

Example DE.2.2.4.1-2. Fragment of TLC Product Architecture

Verification • Each Product Architecture structure satisfies the verification criteria
Criteria established by the specific design method used in its creation.

* The Product Architecture defines all structures for the software and other
work products required by the Application Engineering process.

3. PROCESS DESCRIPTION

The Product Architecture Activity consists of two steps shown in Figure DE.2.2.4.1-1.

3.1 PRocEDuRE

Step: Identify Work Product Components

Action Develop a structure that describes, as a structured set of components, the
internal organization of the products in the family.

Lev-90



DE.2Z4.1. Phoduc Architecture Acivity

Product Architecture - Interface Requirements Specification (IRS) work product family

Instantiation Parameters

crosswalk one of (yes, no) (Pedestrian crosswalk ph button. A value of yes means that
the IRS must include engineering requirements describing the
pedestrian crosswalk push button capability of the ThC system.
A no value means the IRS must omit these requirements.)

light schedule one of (fixed, dynamic) (Identifier what traffic light sequence scheduling capability the
IRS must describe.)

fixed-schedule composite of (The IRS must express the requirements for a traffic light
sequence as defined by this parameter.)

Instantiation Constraints
- Must provide values for fixed-schedule when lighLschedule is 'fixed'

Interface Requirements Specification Annotated Outline

1. Scope

2. Applicable Documents

3. Interface Specification
',This section specifies the requirements for those interfaces to which this IRS applies.)

3.1 Interface Diagrams
(This paragraph identifies the interfaces to which this specification applies. One or more interface diagrams,
as appropriate, will be provided to depict the interfaces.)

3.2 TLC toaClock interface

<if crosswalk = yes then>
3.3 TLC.toCrosswalkPushbutton

(This paragraph identifies the TLMtoCrosswalkPushbutton interface and specifies the requirements for
the interface and for the data transmitted across the interface.)

<endif>

4. Quality Assurance
{This section shall always state "NONE.")

Example DE.2.2.4.1-3. Fragment of TLC Product Architecture

Input • Product Requirements

0 Legacy Products

Mur Product Architecture: Internal Organization

Lev-91



IA~cV Ptodc

ProdureD22c.-.PoutsrhteO me

ofA eahWork lzoxluct o e rcs eureet eiewihdsg
method its Struclowd wih nturn etsmnstedsgnsrcue

sopnect eion and wstion ies^ listed as a enwi ormalyslieta h
Domign Vvforthework andua For tst and do~penietuprahlrrh•sr

Hatridiei ThedPoessha Reureet define thsae ordequiredtnad funtor the deelpmn

ofeach work producL t s bok~aenow, Pocess Ruirento d et fiomne Wihdsig

plmenid sto• Usen ahose, desichn tunmetherminesth desg streatues thtre-
qtermies hsdcopto. Using ADAMRhee r thre acues Information Kid% io-
Sces ad etermndes Fo doumtbentamx~tion, ananottedoue in hihs.c

seactio asbecto is lismntedl as a componentcisinormally sufficie t asiese
signforthed wor rpresent paolar testandeiery suppormt aherarcica str ucturefie
isneee othat charceies eahteofst~ camio dlies function as ameei cmonsis-
tEntyboh work pahohradwt hroduct ibrkndwodemposd noa sureent. of cmpoents
so thatche wotrk mint be perormedindeenent l byt mh xultil componentim

pnlemenos Usig achosenodesig meth odr recurrin musttbecreated their desig
termines. thsRecurrngpatersisgestion. Usin A A= strutue Inoratidon Hdngty

Eahse he rdct isqbyrements tof determions that characterizetiowsitri
adapted to rersetalatiua systems An ---thucue definn. ahs hrceitc hudcre

spondtoy botho withruche idniieonther analsi off Legae ProductRqients. T otn

ofeach struicture mutst be consitabentwt the Prodcequirements addsg vrain

s*~sRa~~atesgmodno asritetadnvry

among systems. Parameterize the structure to characterize required

L"v-92



DEZ2.4.1. Fadadm AwrddWau Aaih

variations. Use a metaprogramming notation to record the effects of
variations. For example, a conditional statement referencing a variation
indicates that a portion of a structure is included only for some systems.

Step: Develop Other Structures

Acion Create any other structures required to define the work product fully.

input * Product Requirements

* Legacy Products

n Product Architecture: Alternate Structures

HfewiWc 0 The chosen design method for software identifies other required design
structures. Using ADARTS, these design structures are the Process
Structure and the Dependency Structure. Hypertext-based documents
would have an analogous alternative structure.

"* Alternate structures impose constraints on the implementation of each
component of the internal organization. The design method characterizes
these constraints.

" Each structure must support a subset of the same variations. The internal
organization determines how these variations affect each component.
Component variations must account properly for variations in relevant
parts of the alternate structures.

3.2 RISK MAMAGEMENT

Rik The Product Architecture will not support all features or variations in Product
Requirements.

Implication The Product Architecture is not a correct solution to the Product
Requirements.

Mitgai•on Review the Product Architecture with developers of the Product
Requirements and experienced designers. Establish traceability of all
required features to elements of the architecture. Evaluate whether variations
that characterize different products lead to proper architectural variations.

4. INTERACTIONS WITH OTHER ACTIVITIES

4.1 FEEDBACK TO INFORMAnON SouRcEs

Contingency The Product Requirements are incomplete, ambiguous, or inconsistent.

Source Product Requirements Activity

Lev-93



Aiwpe Describe the inadequacies in the Product Requirements. Proceed with
Product Architecture, and document any assumptions made regarding the
inadequate portions of the Product Requirements.

Consingeacy The Domain Plan cannot be satisfied with available technical capabilities.

Source Domain Management Activity

Raponse Propose (alternative) revisions to the Domain Plan that better match available
capabilities. Complete a Product Architecture that satisfies the Domain Plan
as closely as possible.

Contingency The practices and procedures specified in the Domain Plan are either
ineffective or inefficient.

Source Domain Management Activity

Response Describe the ways in which the practices and procedures are either ineffective
or inefficient. Propose revisions to the practices and procedures to make them
more effective.

4.2 FEEDBACK FROM PRODUCT CONSUMERS

Contngency Suggestions are made for Product Architecture changes to exploit unforeseen
opportunities. For example, a situation where substantial software is made
available for use in the Domain Implementation that was not available when
the Domain Specification was completed.

Source * Product Implementation Activity

• Process Support Development Activity

Response • Revise the Product Architecture.

* Refer to Domain Management for future planning.

* Reject the changes due to conflicts with the Domain Definition.

Contingency The Product Architecture does not satisfy the Product Requirements.

Source Domain Verification Activity

RPonse Modify the Product Architecture to be consistent with the Product
Requirements.

Contingency The Product Architecture is incomplete, ambiguous, or inconsistent.

Source • Product Implementation Activity

• Generation Design Activity

Lev-94



D•B±2.1.-. IN*d- &M M AD&*

"Component Design Activity

Refine the Product Architecture to correct inadequades.



Th~zppg Waaal lft blan



DE.2.2.42. COMPONENT DESIGN ACTIVITY

1. GETrING STARTED

The Component Design Activity is an activity of the Product Design Activity for creating a Component
Design. The Product Architecture identifies a set of Adaptable Components that are required to im-
plement the work products of a product family. A Component Design is a design specification for one
of these Adaptable Components. Aset of Component Designs defines a library of Adaptable Compo-
nents that may be adapted and composed to implement the work products of the product family. Each
component must be designed to satisfy relevant aspects of the Product Requirements and all design
structures of the Product Architecture.

1.1 Ozwrvxs

The objective of the Component Design Activity is to produce a design for an Adaptable Component
that satisfies applicable Product Requirements in accordance with its role in the Product Architecture.

1.2 REQutiED IMNORUMaON

The Component Design Activity requires the following information:

"* Product Requirements

"* Product Architecture

"* Legacy Products

1.3 REQunRE KNOWLmEGE AND ExnERD

The Component Design Activity requires domain and software knowledge and experience in:

"• How components of systems in the domain are designed

"• The principles and use of an appropriate design method

"• The concepts and practice of abstraction-based reuse (Parnas 1976; Campbell 1989)

2. PRODUCT DESCRIPTION

Name Component Design



-77 1r F.Ri

PtarP A Component Design is a specification for an Adaptable Component that can
be used to construct an applicaton or associated work product.

CoatW Each Component Design represents a family of components. A Component
Design consists of two parts:

" Adepag Sp fcai. The Adaptation Specification for an
Adaptable Component describes the ways that the component can be
tailored via a set of parameters. Each parameter has a name and type
to indicate Uts range of variations. Constraints identify invalid
combinations of parameter variations.

" Interace Spwecfci The Interface Specif ication describes the
desired characteristics of the implementation of the component. The
exact content of the interface specification is particular to the compo-
nent type and the design method used. To describe the entire family,
the interface specification is parameterized with respect to the
variations in the Adaptation Specification.

Form and The Adaptation and Interface Specifications each include textual and tabular
Srucmre information. The form of an Adaptation Specification is the same for all types

of components and includes the following information:

"* Name. Name of the Adaptable Component.

" Instand'aon Parameters. Adaptation parameters for the component,
including the name, type, and description of each parameter.

" Inuatiation Coenoim. Constraints on the instantiation of the
Adaptable Component (e.g., constraints on the legal combination of
parameter values).

The interface part of Adi ptable Components is different for software and
documentation. The content of the software interface is specific to the design
method(s) used to create the members of the family. The following types of
information are examples: definitions of interface programs (names, parame-
ters, parameter types, returned values), definitions of exported types,
descriptions of the effects of interface programs, assumptions about the
environment in which the software is to be used.

The interface for a documentation component does not require the same type
of detailed information. It consists of a brief statement of the content of the
component. Example DE.22.4.2-1 illustrates a fragment of a Component
Design for the TLC domain. This design corresponds to one of the adaptable
components identified in the Product Architecture shown in Example
DE.2.2.4.1-1. The Adaptation Specification defines the adaptation parame-
ters for this adaptable component. The Interface Specification is
parameterized, where appropriate, in teims of these adaptation parameters.

L"v-98



- DE2.2A.2. Copne Duig A"*s

-Desip - Detammn Schedul

This module determine the traffic light seuneschdule boned on mode transition rules defined in the requirements
document.

Adaptation Spec~mifion

Indantiaton Pumeters
schedule lWs of composite oe

stat: (0:00 -2359M
end: (.00 -23:9)

nae:ientifer

Instantiation Constraints
- There must be at least one schedule transition in the scbedule lis.

Interface Specification
conerete opeain

determine schedule transtion Determines the trafti liHt sequence schedule thot the TLC
"ssem should follow nut and returns the appropriate indicator.

current schedule Returns the airrent schedule the TLC "ysem folowin

Boumple DE.22.4.2.1. Fragment of 1W Component Design

VW*Uj~atin 0 The Component Design satisfies the verification criteria established by the
Criteak specific design method(s) used for its creation.

"* The Component Design satisfies afl structures of the Product Ardliftettre

"* The value for each parameter in an Adaptation Specification either is
derivable from the Decision Model or has a fixed, default value for all
instances of the component family.

3. PROCESS DESCRIPTION

The component Design Activity consists of two steps shown in Figure DE.2.2.42-1.

3.1 Procedure

Follow these steps for the Component Design Activity. Domain engineers perform these steps for
each Adaptable Component defined in the internal organization of the Product Architecture.

Step: Define Component Adaptation Specification

Action Identify the variations that parameterize the Adaptable Component, and
record constraints on legal combinations.

IaPut Product Architecture



S......................-

0'31" DEa22.42O1 Compnen Dea roes

-rLgac lNood

inalisacso tedmi.Teecopnnshv oasoitdvra

Am 
aew 

C

I;cfctobtyuma mtteAatto Specification

viigastoaaaeesta cnb sdt niaedsrdadattos

Spa aOPO

to

G~mffd Daig Doeana Va~kdo
Prodad Impkmntaton and Proc.,

&SoppwtDev*AepwU

FigreDE.22.4.2-1. Campoaet Dedgn Prooms

"* Product Requirements

"• Legacy Products

Result Component Design: Adaptation Specification

Heiaistics 0 Identify components in the Product Architecture that have the same form
in all instances ofthe domain. These components have no associated varia-
tions, (i.e., they are not adaptable). You must still provide an interface
specification, but you may omit the Adaptation Specification.

0 The adaptation specification of a component may be determined by
identifying which roles the component must serve in the design, determin-
ing which adaptations are required so that it can fulfill these roles, and de-
vising a set of parameters that can be used to indicate desired adaptations.

*Eamine Legacy Products to determine variations. Concentrate on
semantic, rather than syntactic, distinctions. However, unless you are will-
ing to reengineer work products, you may need to define variations based
on syntactic distinctions as well.

Lcv4IO0



DE-12.24 Component Dedpg Adfflty

" Determine necessary component adaptations by analyzing the Product
Requirements to see how the component must vary to satisfy relevant
requirements. In practice, you should try to use both approaches.

" Decisions that parameterize components must derive from, but need not
be, the decisions identified in the Decision Model. In general, there is a
many-to-many relationship between Decision Model decisions and Com-
ponent Design parameters. You may use whatever decisions most natural-
ly specify variations among members of the family defined by an
Adaptable Component.

Step: Specify Component Interface

Action Specify the requisite properties for the implementation of each component.

Input * Product Architecture

0 Component Design: Adaptation Specification

Result Component Design: Interface Specification

Heuristics The properties that you must specify depend on the type of component and the
design method used. Parameterize each component interface with the
decisions from the components adaptation specification so that it describes
all instances of the component.

3.2 RiSK MANAGEMENT

None

4. INTERACTIONS WITH OTHER ACTIVITIES

4.1 FMBACK TO INFORMATION SouRcEs

Contngency The Product Requirements are incomplete, ambiguous, or inconsistent.

Source Product Requirements Activity

Response Describe the inadequacies in the Product Requirements. Proceed with
Component Design, and document any assumptions made regarding the
inadequate portions of the Product Requirements.

Contingency The Domain Plan cannot be satisfied with available technical capabilities.

Source Domain Management Activity

Response Propose (alternative) revisions to the Domain Plan that better match available
capabilities. Complete a Component Design that satisfies the Domain Plan as
closely as possible.

Lev-101



Candivgxy The practices and procedures specified in the Domain Plan are either
ineffective or inefficient.

Source Domain Management Activity

Response Describe the ways in which the practices and procedures are either ineffective
or inefficient. Propose revisions to the practices and procedures to make them
more effective.

Contnency The Product Architecture is incomplete, ambiguous, or inconsistent.

Source Product Architecture Activity

Response Describe the inadequacies in the Product Architecture. Proceed with
Component Design, and document any assumptions made regarding the
inadequate portions of the Product Architecture.

4.2 FEEDBACK FROM PRODUCT CONSUMERS

Coanngency Suggestions are made for Component Design changes to exploit unforeseen
opportunities. For example, a situation where substantial software is made
available for use in the Domain Implementation that was not available when
the Component Design was completed.

Source * Product Implementation Activity

0 Process Support Development Activity

Response • Revise the Component Design.

0 Refer to Domain Management for future planning.

0 Reject the changes due to conflicts with the Domain Definition.

Contingency The Component Design does not satisfy the Product Requirements.

Source Domain Verification Activity

Response Modify the Component Design to be consistent with the Product
Requirements.

Coninency The Component Design is incomplete, ambiguous, or inconsistent.

Source • Component Implementation Activity

• Generation Design Activity

Response Refine the Component Design to correct inadequacies.

Lev-102



DE.2.2.4.3. GENERATION DESIGN ACTIVITY

1. GETTING STARTED

The Generation Design Activity is an activity of the Product Design Activity for creating a Generation
Design. A Generation Design is a specification of production procedures that an application engineer uses
to produce deliverable application engineering work products. A Generation Design defines a transfor-
mation (or mapping) from an Application Model that describes a product to the equivalent application
engineeringwork products. For each application engineering work product, a Generation Design specifies
how to select and adapt Adaptable Components according to decisions in an Application Model and to
compose them according to the internal organization of that work product in the Product Architecture.
The Generation Design Activity is performed for each work product that comprises the product family
specified by the Product Requirements.

1.1 OJECJVFS

The objective of the Generation Design Activity is to produce a specification for the production
procedures that can be used to produce application engineering work products for a member ofa prod-
uct family through reuse of Adaptable Components. The specification establishes a correspondence
between an Application Model and equivalent domain engineering work products that implement the
intent of the model correctly.

1.2 REQunR ImNoRtmATON

The Generation Design Activity requires the following information:

"* Decision Model

"* Product Architecture

"• Component Designs

1.3 RsQUmD KNowIZIE AND EX uRNCE

The Generation Design Activity requires domain and software knowledge and experience in:

"* How work products of systems in the domain are designed

"° The principles and use of the design method used for the Product Architecture

"* The concepts and practice of abstraction-based reuse (Parnas 1976; Campbell 1989)

LeV-103



DWI." GaOaf Dsdp A Mift

2. PRODUCT DESCRIPTION

Name Generation Design

Purpose A Generation Design is a specification for a production procedure for creating
deliverable application engineering work products.

Content A Generation Design relates the decisions from the Decision Model to the
elements of a work product's internal organization defined in the Product
Architecture. A Generation Design consists of three mappings:

"ArchicwwmMapping. The Architecture Mapping is a description of the
relation between decisions in the product family's Decision Model and
the decisions of the corresponding adaptable Product Architecture.
This mapping describes how values for the Product Architecture's de-
cisions are determined from values of decisions in the Decision Model.
As a result, the Architecture Mapping defines the internal organiza-
tion of a work product that describes a member of the product family
based on decisions in the Decision Model (i.e., from an Application
Model).

" Component Mapping. A Component Mapping is a description of the
relation of each element of the organizational structure to an Adapt-
able Component that implements that element. This mapping defines
how each component of a work product is to be produced.

" Deciion Mapping. A Decision Mapping is a description of the relation
between decisions in the product family's Decision Model and the
instantiation parameters in the adaptation specification of a Compo-
nent Design for each work product component. This relation describes
how values for the instantiation parameters are determined from val-
ues of decisions in the product family's Decision Model.

Form and There is a Generation Design for each supported work product. The
Strcture Architecture Mapping is represented as a statement for each instantiation

parameter of the work product's Product Architecture. The statement
contains a pairing between an instantiation parameter and an expression. The
expression to determine the value to assign an. instantiation parameter is
described in terms of decisions in the product family's Decision Model. The
expression may involve iteration over a group of decisions or conditional
testing of one or more decisions.

The Decision Mapping representation is similar to the Architecture Mapping,
except that the instantiation parameters come from the adaptation
specification of the Component Design for the work product.

The Component Mapping is represented as a "use" statement. If the
expression bracketing the use statement is True, then the use statement
describes which Adaptable Component contains the needed implementation.

L"v-104



DE.2.2.43. Generatio Design Activity

The expression is usually described in terms of decisions in the product
family's Decision Model. However, if the Adaptable Component is always
used, then an expression of True is sufficient to describe this situation.

Examples DE.2.2.4.3-1 and DE.2.2.4.3-2 illustrate fragments of a Generation
Design for the TLC domain. These depict one way of representing the
expressions discussed for Architecture, Component, and Decision Mapping.
The decisions used the metaprogramming notation come directly from the
Decision Model shown in Example DE.2.2.1-1. The parameters on the
lefthand side of the "=" statements in the Architecture and Decision Mapping
come from Examples DE.2.2.4.1-1, DE.2.2.4.1-3, and DE.2.2.4.2-1, respec-
tively.

Generation Design - Static Software Architecture for the TLC product family

Architecture Mapping
crosswalk= <If there is a street S that has a Crosswalk-Button = CB then> yes

<else> no
<endif>

Component Mapping
Determine Schedule

use adaptable component DetermineSchedule-Transition

Decision Mapping
Determine Schedule Transition

schedule = (<forall S in FixedSchedule.Schedule>
( start = <S.Start Thne>,

end = <S.StopThnme>,
name = <S.Name>,

<endfor>
)

Example DE.2.2.43-1. Fragment of TLC Generation Design

Verification 0 The Generation Design specifies mappings that will produce application
Criteria work products which exhibit the internal organization specified in the

Product Architecture.

" The Generation Design specifies mappings that produce application work
products which satisfy the Product Requirements (i.e., the mappings are
consistent with Product Requirements variation).

"* All variabilities allowed by decisions are properly represented as product
variations.

"* The effects of variabilities among work products are mutually consistent
(i.e., all mappings are consistent).

Lev-105



Generation Deign - Enterface Raqukansat Specilieatio wosk -okc famil

Azcbitectue Mapping
crorawaik <Wn Is teeia shuet S tha has a Crosmalk lutz.. CB thsa> yes

-Coln> no

light...chedule = <f the 1hmftflcjgUtConfteer.SchduI* Is fixed thea> fimed
<else> dynamic
<audit>

Component mapping

DecisionbMapping

Example D&.24243-2. Fragment of TLC Generation Design

3. PROCESS DESCRIPTON

The Generation Design Activity consists of two steps shown in Figure DE2.2.4.3-1.

Product eim
A~chlectre, odelComponent Deign

-- ------------------------------------------t--------I

Define Work Component Define Component
* Productt StuteMapg Adaptation

Iaafo In~win

Prae SuprSelnn n

Doai Iofca

Fiur D& 4-.GnrtonDsgrcs

I I10



DE.2.A.3. Ommdam DtiP A~ivba

3.1 PRoaDURE

Step: Define Work Product Structure

Action Define how decisions in the Decision Model affect the structure of the work
product.

Input * Decision Model

0 Product Architecture

RnUl Generation Design: Architecture and Component Mappings

Heuriuics It is sufficient to define the work product structure as a mapping from the
Decision Model to the internal organization of the Product Architecture
for the work product. The internal organization defines the components
that are required to implement the work product. This mapping deter-
mines which elements of the Product Architecture are implemented for a
particular Application Model.

" The Product Architecture determines (conditionally and iteratively) how
components of each work product are to be derived from Adaptable Com-
ponents (i.e., the component mapping is provided implicitly by the Product
Architecture). The Generation Design should not modify that mapping.

" Represent this mapping in metaprogramming notation associated with
components in the Product Architecture. The mapping is defined in terms
of decisions in the Decision Model and determines whether (one or more
of) the associated component(s) should be included in the product created
for a given Application Model. This mapping is formed by analyzing the
Product Architecture and noting conditions that must be true if a particu-
lar component is to be included. If a component is always included in the
product, metaprogramming notation is not required.

" Several Adaptable Components might be used to implement a single
Product Architecture component, depending on decisions in the Applica-
tion Model. In this case, use a conditional in the Component Mapping to
qualify the association between the Product Architecture and Adaptable
Components, thus indicating when a particular Adaptable Component is
used.

Step: Define Component Adaptation

Action Define a mapping from the decisions in the Decision Model to adaptations of
the Adaptable Components referenced by the Component Mapping.

Input • Decision Model

• Component Design

LeW-07



DL2Aý0awadaaDft1AdM%*

0 Generation Design: Component Mapping

Rasult Generation Design: Decision Mapping

Heuistics When a particular Component Design is to be used to implement a particular
component in the Product Architecture, the variability of the Adaptable
Component (i.e., its parameterization) must be realized in terms of decisions
from the Decision Model. Define the value of each parameter (by name) as
a derivation from Decision Model decisions.

3.2 RISK MANAGEMENT

Risk The Generation Design will not produce correctly-structured work products.

Implication Application Production will not produce acceptable application engineering
work products.

Mitigation Derive work product structures from the Generation Design for Application
Models of familiar systems and review the result with experienced engineers
to determine whether the result is acceptable.

4. INTERACTIONS WITH OTHER ACTIVITIES

A.1 FEEDBACK TO INFORMATION SOURCES

Contingency The Decision Model is incomplete, ambiguous, or inconsistent.

Source Decision Model Activity

Response Describe the inadequacies in the Decision Model. Proceed with Product
Architecture and document any assumptions made regarding the inadequate
portions of the Decision Model.

Contingency The Product Requirements are incomplete, ambiguous, or inconsistent.

Source Product Requirements Activity

Response Describe the inadequacies in the Product Requirements. Proceed with
Generation Design, and document any assumptions made regarding the
inadequate portions of the Product Requirements.

Contingency The Domain Plan cannot be satisfied with available technical capabilities.

Source Domain Management Activity

Response Propose (alternative) revisions to the Domain Plan that better match available
capabilities. Complete a Generation Design that satisfies the Domain Plan as
closely as possible.

Condtney The practices and procedures specified in the Domain Plan are either
ineffective or inefficient.

LeV-108



DE.2L43. Gammon Dilp AiUf

Soure Domain Management Activity

i qve Describe the ways in which the practices and procedures are either ineffective
or inefficient. Propose revisions to the practices and procedures to make them
more effective.

Condngency The Product Architecture is incomplete, ambiguous, or inconsistent.

souawe Product Architecture Activity

ksponse Describe the inadequacies in the Product Architecture. Proceed with
Generation Design, and document any assumptions made regarding the
inadequate portions of the Product Architecture.

Condige" The Component Design is incomplete, ambiguous, or inconsistent.

sow" Component Design Activity

Respm Describe the inadequacies in the Component Design. Proceed with
Generation Design, and document any assumptions made regarding the
inadequate portions of the Component Design.

4.2 FEma3cK FROM PRODUCr CONSUMERS

Coanta" Suggestions are made for Generation Design changes to exploit unforeseen
opportunities. For example, a situation where substantial software is made
available for use in the Domain Implementation that was not available when
the Generation Design was completed.

sow= Generation Implementation Activity

Rqpm • Revise the Generation Design.

* Refer to Domain Management for future planning.

* Reject the changes due to conflicts with the Domain Definition.

Con•w•cy The Generation Design does not satisfy the Product Requirements.

sowm Domain Verification Activity

Renpm Modify the Generation Design to be consistent with the Product
ReqWi.4. tnents.

Cotoeny The Generation Design is incomplete, ambiguous, or inconsistent.

sow= Generation Implementation Activity

Respmw Refine the Generation Design to correct inadequacies.

LWv-109



ThMpW8 WzenfimtaIhy lft bkank

LOV-11O



DE.2.3. DOMAIN VERIFICATION ACTIVITY

1. GETHING STARTED

Domain Verification is an activity of Domain Engineering for ensuring the correctness, consistency,
and completeness of domain engineering work products. Both formal and informal techniques may
be applied to the domain engineering work products to verify these properties. Domain Verification
is an independent verification activity performed separately from, and in addition to, the verification
performed as part of each Domain Engineering Activity.

The Domain Verification Activity is motivated by the same concern that motivates IV&V in a
conventional software development process; namely, that engineers involved in developing a work
product cannot objectively judge the quality of that work product. Independent validation of the do-
main engineering product, from the perspective of client projects, is conducted in the Domain Valida-
tion step of the Project Support Activity.

Domain Verification establishes the correctness, consistency, and completeness of domain
engineering work products. These terms have a precise meaning in the context of this activity. The
concept of correctness is that of relative correctness. Similarly, the concept of completeness is that of
relative completeness. A work product is said to be correct (complete) with respect to some criteria
or to a more abstract representation of the entity the work product describes. For example, the Prod-
uct Implementation can be said to be correct (complete) with respect to the Product Requirements.
Consistency, on the other hand, is a term that applies to a collection of related work products (at the
same level of abstraction) that form a whole. TWo products are consistent when they exhibit the in-
tended interrelationships. For example, the Product Architecture, Component Design, and Genera-
tion Design work products are strongly interrelated, and, therefore, mutual consistency is an
important property for these work products.

1.1 ONECriu

The objective of Domain Verification is to independently evaluate the quality of domain engineering
work products.

1.2 REQUMED IMPORM•ION

Domain Verification requires the following information:

"• Domain Definition

"* Domain Specification

Lew-lll



"* Domain Implementation

"* Domain Plan: Practices and Procedures

1.3 RxQumED KNOWLuDGE AND EXPEIECE

The Domain Verification Activity requires domain and software knowledge and experience in:

"* Appropriate software verification techniques

"* How to systematically plan and perform software verification

2. PRODUCT DESCRIPTION

There are no Synthesis work products produced during Domain Verification.

3. PROCESS DESCRIPTION

The Domain Verification Activity consists of three steps shown in Figure DE2.3-1.

Figure Domain Domain Domain
phofie oand Definition Spedfication

r--------------- ------- ----- ----- ------- -

V Domain ln racDomaind PrIdres

SDerify ta r o DViDmaeiona oe nd m

Acd Veifythe crrsectnessh -conistncy, proidd complthenresspefthve Doaivit

Desrintion .

L* Domain Definition

*Domain Plan: Practices and Procedures

PAW& None

Hesailcs *Verify that the parts of the Domain Definition are correct and complete
with respect to the guidance provided in their respective activity
descriptions.

Lev-1 n



D5.ZJ. Dom ikam N akM,

"* Verify that the parts of the Domain Definition are correct with resped to
any specific quality attributes required of them in the Practices and
Procedures portion of the Domain Plan.

"* Verify that the Domain Synopsi Domain Glosary, and Domain
Assumptions are mutually consistent.

"* Use the verification criteria, established for the Domain Definition in its
activity description, as guidance in verifying the Domain Definition.

"• Use static analysis techniques (e.g., formal inspections, reviews, analysis
tools) to verify the Domain Definition. These techniques are appropriate
because the Domain Definition is typically represented in document form.

Step: Verify Domain Specification

Action Verify the correctness, consistency, and completeness of the Domain
Specification.

Inut • Domain Definition

• Domain Specification

* Domain Plan: Practices and Procedures

Emut None

Hkaiwia 9 Verify that the parts of the Domain Specification are correct and complete
with respect to the guidance provided in their respective activity
descriptions.

" Verify that the parts of the Domain Specification are correct with respect
to any specific quality attributes required of them in the Practices and
Procedures portion of the Domain Plan.

" Verify that the Process Requirements, Product Requirements, and
Product Design are consistent with the Decision Model. This means that
these work products only reference decisions in the Decision Model and,
conversely, all applicable decisions in the Decision Model are reflected in
the work products.

"* Verify that the Product Architecture, Component Design, and Generation
Design are mutually consistent.

" Verify that the Product Design is correct and complete with respect to the
Product Requirements.

"* Verify that the Process Requirements is correct and complete with respect
to the assumptions about the Application Engineering process in the Do-
main Definition. The Application Engineering process is normally not

Lcv-113



eplicitly descbed in the Domain Definition, but the Domain Deftion
will typically constrain what is an aoceptable Application Engineering
process.

* Verify that the Product Requirements and Product Design are correct and
complete with respect to the representation of the Product Family in the
Domain Synopsis and Domain Assumptions parts of the Domain
Definition.

Use the verification criteria, established for the Domain Specification
work products in their respective activity descriptions, as guidance in
verifying the Domain Specification.

Use static analysis techniques (e.g., formal inspections, reviews, analysis
tools) to verify the Domain Specification. These techniques are appropriate
because the Domain Specification is typically represented in document form.
If parts of the Domain Specification are represented in an executable form,
the use of dynamic analysis techniques may be appropriate.

Step: Verify Domain Implementation

Acion Verify the correctness, consistency, and completeness of the Domain
Implementation.

Input * Domain Specification

"• Domain Implementation

"* Domain Plan: Practices and Procedures

plt None

Hewi.ics * Establish the criteria that you expect the Domain Implementation to meet
before you try to verify it. Identify analysis that you can perform to ensure
that the Domain Implementation is correct with respect to the Domain
Specification. Your plan should minimally establish verification objectives
and describe a strategy for meeting those objectives.

Verify that the parts of the Domain Implementation are correct and
complete with respect to the guidance provided in their respective activity
descriptions.

• Verify that the parts of the Domain Implementation are correct with
respect to any specific quality attributes required of them in the Practices
and Procedures portion of the Domain Plan.

• Verify that the Process Support and Product Implementation are mutually
consistent.

* Verify that the Component Implementation and the Generation
Implementation are mutually consistent.

Lev-114



DF23. D•man *wriwafion MMiy

" Verify that the Process Support is correct with respect to the Process
Requirements.

" Verify that documents and automation that make up the Process Support
are engineered in a way that adequately addresses human factors con-
cerns. For example, you should establish that the Application Engineering
Environment portion of Process Support has the qualities of usability,
adequate performance, and tolerance of user errors.

" Verify that the analyses that the Process Support allows to be performed
on Application Models produce correct results.

" Verify that the Product Implementation is correct and complete with
respect to the Domain Specification. The requirements for the Product
Implementation are represented in the Product Requirements portion of
the Domain Specification. The internal organization for the Product Im-
plementation is represented in the Product Design portion of the Domain
Specification.

" Verify that work products produced using the Process Support have
expected properties. Do this by resolving the decisions of the product fami-
ly's Decision Model, producing the work products corresponding to that
model, and then verifying that the work products have the expected
properties. Speci~ically:

- Verify that the work products produced by the Process Support are
correct and complete with respect to the Product Requirements
and Product Design of the product family (appropriately instan-
tiated with the decisions from the Decision Model).

- Verify the usability and correctness of the Delivery Support. This
should be established through direct inspection and by using the
delivery support to install/deliver the Application Product.

Agood strategy for selecting work products to produce is to try to build all
or part of Legacy Products that are within the intended scope of the
domain.

Use the verification criteria, established for the Domain Implementation
work products in their respective activity descriptions, as guidance in
verifying the Domain Implementation.

Use conventional verification techniques that are appropriate to the task
of verifying the Domain Implementation. Static analysis techniques (e.g.,
inspections) are appropriate for static representations of the Domain Im-
plementation (e.g., Application Engineering User's Guide). Dynamic
analysis techniques (e.g., testing) are appropriate for dynamic aspects of
the Domain Implementation (e.g., automated support for specification,
analysis, and product generation).

Lev-ll5



3.2 Ris MAmAzmGMN

J• IlThe criteria used to evaluate the domain engineering work products will be
unduly influenced by the final content and form of the work products
themselves.

liatmion The effectiveness of the verification effort will be reduced.

Mlogaon Define acceptable levels of correctness, completeness, and consistency for
each dconain engineering work product prior to examining it.

4. INTERACTIONS WITH OTHER ACTIVITIES

4.1 FEE•oACK TO INmORMAnON SouRcEs

Contnn=7 The Domain Definition is incorrect, inconsistent, or incomplete.

Some Domain Definition Activity

Ruponse Precisely communicate how the Domain Definition is incorrect, inconsistent,
or incomplete.

CondMaicy The Domain Specification is incorrect, inconsistent, or incomplete.

Soure Domain Specification Activity

P-ponse Precisely communicate how the Domain Specification is incorrect,
inconsistent, or incomplete.

Condngency The Domain Implementation is incorrect, inconsistent, incomplete.

Source Domain Implementation Activity

Reponse Precisely communicate how the Domain Implementation is incorrect,
inconsistent, or incomplete.

4.2 FEEDBACK FROM PRODUCr CONSUMERS

None

Lev-116



DE.3. DOMAIN IMPLEMENTATION ACTIVITY

1. GETTING STARTED

Domain Implementation is an activity of Domain Engineering for implementing product and process
support for application engineering projects in a business area. The Domain Implementation must
satisfy the Domain Specification created by Domain Analysis. Product support consists of a set of pro-
duction procedures and associated Adaptable Components that can be used to create standardized
work products for members of the product family. Process support consists of procedures,
documentation, and, optionally, automation that define a standard Application Engineering process.

1.1 OWcnw

The objectives of the Domain Implementation Activity are to:

"* Create a set of Adaptable Components and Generation Procedures as specified in the Product
Design

"* Create a standardized Application Engineering process as specified in the Process Requirements

1.2 REQuI-mD INFORMATION

The Domain Implementation Activity requires the following information:

"* Domain Specification

"* Legacy Products

1.3 RsQumRD KNOWuLGE Am1 ExPemu cE

The Domain Implementation Activity requires domain and software knowledge and experience in:

" Technologies for creating, adapting, and composing Adaptable Components into systems and
the verification of such Adaptable Components

"• Documenting and providing automated support for Application Engineering processes

"* How systems in the domain are built and sufficient expertise to create and document the
software for these systems

2. PRODUCT DESCRIPTION

Name Domain Implementation

Lev-117



Purpose A Domain Implementation contains sets of Adaptable Components and
associated production procedures that you can use to create standardized
work products for members of a product family. The Domain Implementation
also consists of the procedures, documentation, and, optionally, automation
that define a standard Application Engineering process.

Content A Domain Implementation consists of two components:

"* Prouct mpementation. A Product Implementation contains an
adaptable implementation of a product family (see Section DE.3.1).

"* Process Support. An application engineering infrastructure that
supports the practice of Application Engineering by defining the pro-
cedures and standards by which application engineers develop
applications (see Section DE.3.2).

Verfation The Domain Implementation supports the product family identified in the
Crteria Domain Specification.

3. PROCESS DESCRIPTION

The Domain Implementation Activity consists of the two steps shown in Figure DE.3-1.

Leg"7
Products .. ... ....

--------------------------------------------------------

Ind

* mpem entation

arje &wr n oai efSt

igume Dto -1. Domai implementation Process

I.V-118



DW. Domma -MMOtf AdM*

3.1 PROcIDuRE

Follow these steps for the Domain Implementation Activity.

Step: Product Implementation Activity

Acion Implement a product family.

Input * Domain Specification

• Legacy Products

RePsut Product Implementation

Heurstics * Derive the Product Implementation of a product family from appropriate
Legacy Products.

• Describe a mechanical procedure by which application engineers can

select, adapt, and compose a deliverable application work product.

Step: Process Support Development Activity

Action Create an application engineering infrastructure to support the standardized
process by which application engineers develop applications.

Input * Product Implementation

* Domain Specification: Process Requirements

Reawt Process Support

Heuristics * Document the procedures and standards that application engineers follow
to develop applications.

* Optionally provide automated mechanisms which support the effective
and correct performance of the Application Engineering process.

4. INTERACTIONS WITH OTHER ACTIVITIES

4.1 FEEDBACK TO INFORMArION SouRcEs

Confingency The Domain Specification is incomplete, ambiguous, or inconsistent.

Source Domain Analysis Activity

Response Describe how the Domain Specification is inadequate and suggest how it may
be modified. Proceed with Domain Implementation as far as possible with the
current Domain Specification.

Condngency Unforeseen opportunities arise that cannot be exploited given the current
Domain Specification, e.g., a situation where substantial software is made

Lev-119



available for use In the Domain Implementation that was not available when
the Domain Specifaton was completed.

Sourcle Domain Analysis Activity

Risponse Document the opportunities and the required changes to the Domain
Specification.

4.2 FEwBAcK FROM PRoDucr CONSUmERS

Confingency The Domain Implementation is incorrect, inconsistent, or incomplete.

Source Domain Verification Activity

Raponse Request clarification of the intent of the Domain Specification, if necessary.
Modify the Domain Implementation to satisfy the Domain Specification.

Cot'ngency The support for the Application Engineering process is inefficient.

Source Project Support Activity

Response Revise the Domain Implementation based on Application Engineering
experience.

Lev-120



DE.3.1. PRODUCT IMPLEMENTATION ACTIVITY

1. GETTING STARTED

The Product Implementation Activity is the activity of the Domain Implementation Activity for
creating a Product Implementation. A Product Implementation is an implementation a product fami-
ly. A conventional implementation is an application and associated work products that solve a specific
problem. Similarly, a Product Implementation is an implementation that is adaptable to decisions
supported by the product family's Decision Model in order to solve any of a family of problems. A
Product Implementation consists of Adaptable Components (e.g., code, documentation, and support
for verification/validation) and procedures, as needed, for selecting, adapting. and composing these
components. The Adaptable Components and procedures are used to create deliverable application en-
gineering work products in accordance with an Application Model that describes the product.

1.1 0sjecri•s

The objective of the Product Implementation Activity is to implement the Product Design. This
implementation is used by application engineers to generate required work products for systems in
the domain.

1.2 REQumED INFORMATON

The Product Implementation Activity requires the following information:

"* Product Requirements

"* Product Design

"• Decision Model

"* Legacy Products

1.3 REQUIRED KNowLmGs AmD ExpERIEcE

The Product Implementation Activity requires domain and software knowledge and experience in:

"* The design method used in specifying the Product Design

"* Existing systems in the domain, including how they are designed, implemented, and verified,
and what are their components and architectures

JAY-121



W 77 7 " 1 - . .....4k

"* Urget language and patfm capbties

"* The tedhngWies for adaptn an composi components ito work products ta mak up an
integrated product

2. PRODUCT DESCRIPTION

Namw Product Implementation

?WPes A Product Implementation is an adaptable implementation of a product
family. An application engineer must be able to derive members of a product
family by adapting the Product Implementation mechanically based on the
product family's decisions in an Application Model.

COmW A Product Implementation consists of the following parts:

""Adatabl Componens. An implementation of the product family's
Component Design. Adaptable Components include software, docu-
mentation, and verification/validation components that are adapted
based on the product family's Decision Model (see Section DE.3.1.1).
Adaptable Components may be derived from Legacy Product. Collec-
tively, these Adaptable Components form all of the necessary compo-
nents for constructing, documenting, verifying/validating, and
delivering a system.

" GCeautuon ProcW=. An implementation of a Generation Design for
selecting, adapting, and composing Adaptable Components into deliv-
erable work products that satisfy an Application Model (see Section
DE.3.1.2).

There is a Generation Procedure per product family. The Generation
Procedure unifies a set of separate work product specific Generation
Procedures. Each work-product-specific Generation Procedure corre-
sponds to a particular set of Adaptable Components in a Product
Implementation.

Vwecaion The Product Implementation correctly constructs existing or envisioned
l systems from the domain.

3. PROCESS DESCRIPTION

The Product Implementation Activity consists of the two steps shown in Figure DE.3.1-1.

3.1 PaomuRz

Follow these steps for the Product Implementation Activity.

Step: Component Implementation Activity

Lev-122



DIR 4 . ftodWg Jn~inmsmomw A~a*Ay

Prdc aAO kd
a-cý (PAU eip

-- 
. . .. .a

----- ----------- a-

GeeatiDomanVe

Fgure DE3.1-1. Product hmplementatimi Proom

Action Create Adaptable Components for the product family.

Input 0 Product Requirements

"* Product Design

"* Legacy Products

RAult Adaptable Components

Heurisica *Derive Adaptable Components from Legacy Products.



* Ensure that the Aaptabe Cmponent satlies and s consistnt with
relevant aspects of the Product Design and Product Requirements.

Step: Generation Implementation A4tivity

Action Automate or document a mechanical procedure by which application
engineers can derive deliverable application work products consistent with an
Application Model.

hVu • Generation Design

"* Decision Model

"* Product Design: Product Architecture

Rawdt Generation Procedure

Hewisfics Ensure that the Generation Procedure satisfies and is consistent with relevant
aspects of the Generation Design.

3.2 RISK MANAGEMENT

Risk The Product Implementation will be inconsistent with Product Requirements.

Implication Application work products will be generated that do not satisfy the Product
Requirements.

MItIgation When uncertainties arise, review the Domain Specification with domain
analysts to clarify their intent. Review the Domain Implementation with other
experienced engineers to identify omissions and inconsistencies. Derive test
work products based on knowledge of existing or anticipated systems for
review with experienced engineers.

4. INTERACTIONS WITH OTHER ACTIVITIES

4.1 FEEuCK TO INoRMAnmo SouRcEs

Contbnency The Domain Specification is incomplete, ambiguous, or inconsistent.

Source Domain Specification Activity

Response Describe how the Domain Specification is inadequate, and suggest how it may
be modified. Proceed with Product Implementation as far as possible with the
current Domain Specification.

Contingncy Unforeseen opportunities arise that cannot be exploited given the current
Domain Specification, e.g., a situation where substantial software is made
available for use in the Domain Implementation that was not available when
the Domain Specification was completed.

Lev-124



DLI3L hWMlob m mo Iu~nuaAmom

Sowe= Domain Specification Activity

kAPMU Document the opportunities and the required chanism to the Domain
Specification.

4.2 Fwm•DcK FROM PRoDucr CoNsumns

C n The Product Implementation does not satisfy the Domain Speciftation.

saw= Domain Verification Activity

pAe Request clarification of the intent of the Domain Specification if necessary.
Modify the Product Implementation to satisfy the Domain Son.

LW6.12



Mh pqeg bdendonadfy kft blank

L49WI26



DE.3.1.1. COMPONENT IMPLEMENTATION
ACTIVITY

1. GETTING STARTED

Component Implementation is an activity of the Product Implementation Activity for creating an
Adaptable Component. A component is any work product fragment (e.g., software, documentation,
or verification/validation artifact) produced during the Application Engineering process. An applica-
tion engineering work product consists of a set of components. An Adaptable Component is a repre-
sentation of a family of components that satisfies a Component Design (i.e., is adaptable to specified
variations). The variability of an Adaptable Component enables application engineers to extract
components to be used in creating work products for members of a product family.

1.1 OJECnVES

The objective of the Component Implementation Activity is to implement an Adaptable Component
that satisfies a Component Design, consistent with relevant aspects of the Product Requirements and
Product Architecture.

1.2 REQuImR INFORMATION

The Component Implementation Activity requires the following information:

"* Product Requirements

"• Product Architecture

"• Component Design

"* Legacy Products

1.3 REzQUmID KNOWLEGE mD EXPERwINCE

The Component Implementation Activity requires domain and software knowledge and experience
in:

"• Applicable standards and techniques for design, implementation, and verification of software
components

"• How to design, implement, and verify components of a work product family given a
specification for the family

"* The design and implementation of existing systems in the domain

Lev-127



2. PRODUCT DESCRIPTION

Name Adaptable Component

PWupos An Adaptable Component is a component (e.g., of software, documentation,
verification/validation support) that is adaptable with respect to variations
specified in the Component Design.

Comnto An Adaptable Component is an implementation of a family of components.
This family is defined by a Component Design, with support by portions of the
Product Requirements and Product Architecture. The Component Design
characterizes an Adaptable Component by specifying the permissible
adaptations of the component, along with the desired characteristics of its
implementation.

Form and An Adaptable Component is uniquely named and consists of two parts: an
S&ucWM adaptability interface and a body.

A component family is characterized by a set of common capabilities and
variations in those capabilities. The adaptability interface is a specification of
a set of adaptation parameters that provide for the characterization and
extraction of a particular instance of a component family.

The body is the sum of the potential implementations of all of the components
in the family. The term "potential" is used because the parameters are
sufficient to select any component family instance uniquely, but the particular
implementation either may not be available or may be extracted from a
representation of the family or relevant subfamily. This varies with the
mechanism used for implementing adaptability in the Adaptable Component.
Three common mechanisms for implementing an Adaptable Component are:

* Physica/ Separadon. Represent members of the component set as
physically distinct entities (e.g., in separate files on a computer).

*TaWi*Lanue Mehansms. Use the language-specific facilities to
represent different component set members. Ada generics, C+ + tem-
plates, Interleaf effectivity control, and WordPerfect macro features
are examples of target-language mechanisms for representing an
Adaptable Component.

SMaap~raminmi. Superimpose a language for handling variations on
top of the language in which all members of the component set are
expressed.

These may be used separately or in combination to implement a particular set
of components.

The Booch Ada stack packages (Booch 1987) are an example of an Adaptable
Component. There is a unifying concept of what a stack is and how it works.
Different stack components are extracted based on decisions such as:

Lev-128



De.3.1.1. C, poawa Im~tmsadan A"*

"* Typ. The type of data that can be put into the stack.

" Imru•on. Whether an indexing mechanism should be available for
moving forward and backward through the stack in addition to simply
pushing elements onto and popping elements off of the top of the
stack.

"* Garbage Coaction. Whether the stack should manage unused stack

space dynamically for later use.

"* Bowifn. Whether the stack should be bounded in length.

The Booch packages use physical separation to implement 26 different types
of stacks. This physical separation approach has the advantage of being simple.
If a family has 10 instances, there are 10 implementations and each can be
written and verified independently. Physical separation does not take
advantage of similarities among the instances, however, nor does it make
explicit how variabilities determine the content of each instance.

Ada provides generic packages as a standard facility that you can use to nmplement
a code Adaptable Component whose instances differ only in the values of
well-defined placeholders that can be substituted at compile time. The "type"
variability of stack packages may be represented using a generic package. The
placeholders are parameters defined in the adaptabliity interface of the Adaptable
Component. This approach has the advantage of represeting variabilities for the
component family more compactly and uniformly, hoer, only a simple form of
parameter substitution is supported.

A metaprogra.ming approach (Campbell 1989) uses a preoes meanis
to extract a concrete component from an Adaptable Component. This approach
embeds target text fragments of a work product (eg, code, documentatio,
verification/alidation support) with a superimposed metaog nm notation.
The metaprogran mm notation specifies how the target fragments are to be
combined and adapted, based on the parameters in the adaptability interface of the
Adaptable Component. Typical metaprgmi adaptations include:

"* Substitution of parameter values

"* Conditional inclusion of text fragments

"• Repetition of text fragments

"• Definition and in-line instantiation of parameterized fragments

This approach provides greater flexibility in representing a component family
compactly but results in more complex descriptions. Since many implementa-
tions may be derived from a single description, domain engineers must both
manually inspect that description and extract and verify representative
instances. Example DE.3.1.1-1 illustrates a small fragment of a Component

LeV-129



"Wil

Implemetation for the TLC domin. This example contains a portio oate
mpem aon for the Adaptble Componet specifed in Etanqie

DE.2=42-1.

C o enImplhmentabon - •taiSchedu d WrnTkm

type modes ( -- an umerat type descbkwn the different traffic lht 1 chedude
<forall a In s>edul>

<endfor>

function deternine schedule tranition return moe is
dock-time: c

be&i
c: get dock tjme;

eDra.l a•.n schedule>
if ct> Prou- Attiand ct<= <Lend> then

return <snam.);
edsif

<endfor>

endift,
end determine schedule tranhition;

Example DE3.1.1-1. Fragment of'l1W Component Implementation

Veiiataion 0 The Adaptable Components implement their specifications as defined in
Crieria the Product Architecture and Component Designs.

"* The Adaptable Components produce the correct variations in concrete
components.

"* Behaviors or constraints imposed by Product Requirements or Product
Architecture on the Adaptable Component are all supported.

3. PROCESS DESCRIPTION

The Component Implementation process consists of all activities necessary for implementing an
Adaptable Component to its Component Design specifications, consistent with relevant parts of the
Product Architecture and Product Requirements. This involves the design, implementation, and veri-
fication of the family of software, documentation, or test-support components. It may involve the
reengineering of existing components of work products from previously built systems. The
Component Implementation Activity consists of the three steps shown in Figure DE.3.1.1-1.

3.1 lNocEDuRE

Follow these steps for the Component Implementation Activity.

Le4-130



DE3.1.1. CtMhMe 1Pk=sad -

Stp einteComponent 'spIntertal Structure
Action Cre~ate ninternal deig dfte tucts r Randeeet fterquired

Do* apt's

Inan LbtegayPout

Inem Candidte Cmoet

H• • ThmpoenAatal Component nenldsg ut aifot opnn

I -- - - - - - - - - - - - -- - - - - - - - - - -

&W a~Aws4a

Di~esg specifiatiComonnt Thnpe srcues of t ProdutAchtcue awm

Se:DsgthCoponetse adInternal reS rmnso teitra tructure (~. o or

Creany ornal desigrformtheestructefinendonstrants oa he rer

ipt0Components areusedignthimlenao.

0 LegacyProduct

Hwsa h dpal opnnsitra einms atif t opnn

copnet ar sdi h mlmnain

Lw-1a



D13 .1. COmpmWN IinphOMS AdaiftM

" Envision how to implement required members of the component's work
product family. Create structures, according to the design method used,
that characterize the required implementation. Parameterize each
structure, if appropriate, with adaptability parameters that vary the struc-
ture, as required, for different members of the component family.
Consider the required operations of the members.

" Determine whether a suitable component that approximates one of these
desired instances is available from Legacy Products. Identify and evaluate
the quality of each such component and designate it as a Candidate Com-
ponent for further use. Determine which Adaptable Component variations
are implicitly addressed by this selected Candidate Component.

" Consider whether other Adaptable Components in the Product
Architecture can be used to implement all or part of this component fami-
ly. Components that have complex functionality may be implementable as
a composition of instances of other, more primitive components.

" Consider starting with the internal designs of identified Candidate
Components. Portions of several candidate components may be used
collectively to implement the Adaptable Component. These components
may implement different variations that will be required for the family.
Characterize which instance of the family corresponds to each component
(i.e., by its parameter values). Consider whether each design is sufficiently
well-engineered and representative of the family, or at the least of a
subfamily, to provide substantial leverage in being refined to represent
other variations and the family as a whole. Consider that they may
represent different subfamilies that should be structured differently. See
if their designs can be unified using variations. Be sure you can still derive
each of the components with an acceptable structure.

"* Use adaptation mechanisms (e.g., target-language mechanisms,

metaprogramming) already present in the existing work products.

Step: Implement the Component

Action Elaborate the internal design to implement the Adaptable Component.

Input * Adaptable Component: Internal design

"• Component Design

"* Product Architecture

"* Candidate Components

"• Legacy Products

Result Adaptable Component

Lv-132



DE3.1.1. Campont IqAeaaca Actiity

He k * Fill in the internal structure with the details of the implementation. Keep
in mind how the adaptabilities affect the content of the parts of the
structure.

If suitable Candidate Components were used in creating the internal
design, then the implementations of those components can be useful as the
starting point in implementing the Adaptable Component.

If another Adaptable Components is to be used in implementing this
Component, determine how the adaptability parameters of this Compo-
nent can be mapped into the parameters of that Component so that its
correct instance is derived for a particular instance of this family.

Parts of the Adaptable Component might have to be engineered from
scratch if all elements of the Adaptable Component's implementation can-
not be obtained from existing Candidate Components or other Adaptable
Components. These areas should be given much greater thought to ensure
that you produce the correct content.

Consider reengineering existing application engineering work products
(e.g., Legacy Products) to increase their reusability. For example, you
might want to replace arbitrary limits on data structure size with generic
parameters. You should consider this if it will relax or remove constraints
in your Decision Model. You should take into account any documentation
or coding standards for the targeted project when you reengineer existing
work products.

Step: Verify the Component

Action Verify that the Adaptable Component satisfies all relevant specifications.

Input * Adaptable Component

"* Component Design

"* Product Architecture

"* Product Requirements

"• Candidate Components

Reait Verified Adaptable Component

HetuistIcs * Perform rigorous inspection of the Adaptable Component by other
experienced engineers. The Component Design, as well as relevant parts
of the Product Requirements and Product Architecture, should be verified
as being satisfied.

* Derive representative instances of the Adaptable Component and test
those instances in a conventional fashion to see if they operate correctly.

Le-D33



DR331.1. Cmow -0W

One part of this activity is the creation of test-case scenarios that can be
used in regression testing of the Adaptable Component when it is modified
in the future. These scenarios may be made adaptable to the same parame-
ters as the Adaptable Component itself so that a scenario can be derived
for a particular test instance.

"Rederive the Candidate Components that influenced the implementation
of the Adaptable Component. The original and derived instances can then
be compared to see if and how they differ and whether an equivalent result
can be produced.

" Use of a Candidate Component may have been based on assurances that
the component received with respect to certain desired properties such as
correctness, reliability, certification, and trust (in the security sense).
Note, however, that modification of the component can invalidate some
of these assurances (i.e., certification and trust). It is important to verify
that the desired properties are retained when the component is extracted
from the resulting Adaptable Component.

3.2 RISK MANAGEMENT

Risk Certain combinations of adaptability are not fully supported in the Adaptable

Component-

hmplcation Work products for some systems will not be derivable using the Component.

Mitigadon In verifying the Adaptable Component, use bounds-coverage techniques to
identify a variety of adaptability combinations in deriving test instances.

Risk The effort required to implement all specified adaptabilities for an Adaptable
Component is not viable compared to that required to develop concrete
components which support a single system development effort.

Implication Only a subfamily of the Adaptable Component will be available for production
of systems in the domain.

Mtation Implement the variations required for the current systems under
development. The development of these variations may require less effort
than developing all possible variations and can be refined as additional needs
arise. The Adaptable Component can be evolved to a completed state over
several development iterations of a system or systems.

Risk Determining the value of existing components as a basis for the Adaptable
Component will require too much effort (e.g., too many components to search
through, too labor intensive to look through complicated components, too
difficult to determine whether a component is correctly implemented).

Implation Effort to evaluate and reengineer existing components exceeds the effort to
create the Adaptable Component from scratch.

Iev-134



DH.3.1.1. Campm" l inmpkm Mbit

Mitgation If there are too many existing components to search through to find a good
baseline component, limit the amount of effort dedicated to the search, and
use the best approximation that results from the limited search.

If looking through complicated components is too labor-intensive, reduce the
number of components that will be reviewed. If the component is overly
complicated, relying on higher-level documentation (i.e., requirements,
high-level design, or testing documentation) of the component as an indicator
of its worth may be beneficial. Reviewing documentation on the existing
component is likely to take less effort than reviewing code.

If determining the correctness of the component is difficult, then determining
correctness from previous test documentation may be sufficient. Reliance on
existing components may be greater if engineers are available who developed,
or at least used, the existing components.

Risk Modifying the baseline component may invalidate assurances of quality that
the component possessed (e.g., certification).

Implication Modifying a certified component will require that the resulting Adaptable
Component must pass, once again, the tests required for assurance of given
properties.

Mitigation Concentrate effort on areas of particular concern. If the given properties
are less important for the component family as a whole, treat that particu-
lar member as a special case (i.e., a component subfamily in its own right).
That is, if a component family contains several members, only one of which
is certified, define two Adaptable Components, one whose component
family contains the certified member and another which contains all the
uncertified members.

Myl to retain the essential nature of the baseline component in the
Adaptable Component so that proving assurance of given properties is not
an expensive process.

4. INTERACTIONS WITH OTHER ACTIVITIES

4.1 FEEDBACK TO INFORMATION SOURCES

Continency The Component Design is incomplete, ambiguous, or inconsistent.

Sowre Component Design Activity

Response Describe how the Component Design is inadequate, and suggest how it may
be modified. Proceed with Component Implementation as far as possible with
the current Component Design.

4.2 FEEDBACK FROM PRODUCT CONSUMERS

Contingency The Component Implementation does not satisfy the Component Design.

Lev-135



Sm Domain Veifiattion Actilvty

pAsa Rcqucst clarification of the intent of the Component Design, if neceNMy.
Modify the Component Implementation to satisfy the Component Design.

Lev-136



DE.3.1.2. GENERATION IMPLEMENTATION
ACTIVITY

1. GETTING STARTED

Generation Implementation is an activity of the Product Implementation Activity for creating a
Generation Procedure. A Generation Procedure is a precise description of how to derive deliverable
application engineering work products consistent with the decisions in an Application Model for a
product family. A Generation Procedure may be automated or may take the form of a precise
description that application engineers can mechanically follow to create work products.

1.1 OW Es

The objective of the Generation Implementation Activity is to create a Generation Procedure as
specified by a Generation Design.

1.2 REQUIRED INFORMATION

The Generation Implementation Activity requires the following information:

"* Generation Design

"* Product Architecture

"• Decision Model

"• Component Designs

1.3 REQUIRED KNOWLuD- AmD Ex, m zcg

The Generation Implementation Activity requires knowledge and experience in:

"* The notation used in specifying the Generation Design

"• The technologies for adapting and composing components into work products

2. PRODUCT DESCRIPTION

Name Generation Procedure

Lem-137



hwpWeP This is a procedure that an application engineer uses to create deliverable
application engineering work products for a member of a product family using
Adaptable Components. This procedure is either implemented as a product
generator or documented as a manual procedure.

Contua The Generation Procedure is a procedural description for producing an
application engineering work product that satisfies the mappings of a
Generation Design. The Generation Procedure describes how to select
appropriate Adaptable Components, how to apply decisions from an
Application Model to adapt them, and how to compose them to create the
work product in final form.

Fenm and The form of the Generation Procedure depends on whether the procedure is
Stbuwh automated or manual. The Generation Procedure is either implemented as an

automated product generator or documented as a manual procedure to be
followed by application engineers. If the manual form is chosen, then the
Generation Procedure form is likely to resemble the form of a Generation
Design. If the Generation Procedure is implemented in the form of a product
generator, however, it will be a conventional software program.

fbcaion 0 The Generation Procedure for a product family can be used to produce ap-
Cia plication engineering work products that exhibit the internal organization

specified in the Product Architecture.

"* The Generation Procedure for a product famiy can be used to produce applica-
tion engineering work products that satisfy the Product Requirements.

" If a manual form is used, the Generation Procedure for a product family
dearly describes how deliverable application engineering work products
are constructed from Adaptable Components based upon decisions
contained in an Application Model.

3. PROCESS DESCRIPTION

The Generation Implementation Activity consists of the two steps shown in Figure DE.3.1.2-1.

3.1 PRocluRE

Perform one or both of the following two steps. The appropriate action depends on what automation
you determine to have a significant payoff in Application Engineering.

Step: Document the Generation Procedure

Acaon Document some or all of the Generation Design.

I t* Generation Design

* Product Architecture

* Decision Model

* Component Designs

Lev-138



F'qpn'e~~DL.1LG -6..21 INOStMOMMAOemntt~nPnff

MOM mbbetD Dsip

F Oencation Prceduire faai

Inlda ecitino o oacestedcsos na plcto
Moeao ardc fml.TeDcsonMdlpoie h

~ ~I •ea 
IeeainDsg

• Prodct Ar hitecure

Pm Decsin od elkn n P~ fo

a Componen Designs
Procedure. Doumentthep edurei mt hpl

engineers.

"* Include a description of how components are composed to form a work
product consistent with its Product Architecture.

"* Include a description of how to access the decisions in an Application
Model for a product family. The Decison Model provides the
organization of the decisions' conceptual schema.

Step: Automtate the Generation Procedure

Aedo. Develop automated tools that implement some or all of the Generation
Procedure as defined in the Generation Design.

InPrd 0 Generation Design

0 Product Architecture

0 Decision Model

* Component Designs

Lev,-139



DU.R=. Gmueadon Iusm.as A"*

Assu Generation Procedure

Heuristics If the Application Modeling Activity in Application Engineering is
supported by automation, then the Generation Procedure must access the
Application Model specification. If the activity is not automated, then
there must be an automated mechanism for providing the decisions of the
Application Model as input to the Generation Procedure. The Decision
Model provides the organization of the decisions' conceptual schema.

If a metaprogramming technology, such as described in the Component
Implementation Activity (see Section DE.3.1.1), is used to implement the
Adaptable Components, then the same metaprogramming technology is
used to instantiate those components. Metaprogramming technology may
also be useful in implementing portions of the Generation Procedure
itself.

Creating an automated Generation Procedure is a software development
task. It requires the design of the required program, implementation to
that design in a programming language, testing to verify that the resulting
program implements the Generation Design correctly, and documenta-
tion so that the program can be correctly modified as the Generation
Design changes.

Tools such as the UNIX make facility may be useful in automating the
procedure for composing adapted components into deliverable work
products.

3.2 RISK MANAGEMENT

None

4. INTERACTIONS WITH OTHER ACTIVITIES

4.1 FEEwBAcK TO INoRMArON SOURCES

Condinency The Generation Design is incomplete, ambiguous, or inconsistent.

Source Generation Design Activity

Response Describe how the Generation Design is inadequate, and suggest how it may be
modified. Proceed with Generation Implementation activity as far as possible
with the current Generation Design.

Condhigny Unforeseen opportunities arise that cannot be exploited given the current
Generation Design, e.g., a situation where substantial software is made
available for use in the Generation Implementation that was not available
when the Generation Design was completed.

Source Generation Design Activity

LIvo140



.W Document the opportunities and the required changes to the Generation
Desin

4.2 F=&EEACK FROM PNoDUcr CoNsUmas

C&AM99 The Generation Procedure does not satisfy the Generation Design.

SNM Domain Verification Activity

Aceem Request clarification of the intent of the Generation Design if necessary.
Modify the Generation Procedure to satisfy the Generation Design.

Contiwwicy A manual Generation Procedure is difficult to use.

Sure Project Support Activity

PAPoW Investigate new forms for conveying the Generation Procedure to the
application engineers.

Coenoe y The Generation Procedure cannot be used in its current form in the
Application Engineering process.

SOWIUw Process Support Development Activity

kAponm Revise the Generation Procedure (e.g., improve automation or upgrade
documentation) so that it can be effectively used by application engineers.

Lev-141



Th~pW~ Wsendmally lft bhaik

Lev-142



DE.3.2. PROCESS SUPPORT DEVELOPMENT
ACTIVITY

1. GETFING STARTED

The Process Support Development Activity is the activity of Domain Implementation for creating the
Process Support component of Domain Implementation. Process Support is the infrastructure that
supports the practice of Application Engineering by defining the procedures and standards by which
application engineers develop applications (i.e., the Application Engineering process). It optionally
provides automated mechanisms which support the effective and correct performance of the Applica-
tion Engineering process and associated use of the Product Implementation component of Domain
Implementation.

1.1 OBJFcrvs

The objectives of the Process Support Development Activity are to:

"* Document policies and procedures that institute a standard Application Engineering process
and that guide its proper performance

"* Determine the appropriate degree of automation that will support the Application
Engineering process and construct the automated support

1.2 REQUIE IMRMMON

The Process Support Development Activity requires the following information:

"• Process Requirements

"* Product Implementation

1.3 Rl•EQum lKNow=oGE AmD ExpEEcE

The Process Support Development Activity requires domain knowledge and experience in:

"* Documenting. in a coherent and usable form, the use of conventions, policies, and procedures

"* How to develop and communicate process standards in a concise and usable form

"* Software production processes, methods, and practices

LV6143



"* Tools and technologies that can support an Application Engineering process (e.g., producing
oode/documents/tests, simulation/modeling)

"• Developing user documentation and training courses for software development processes

This activity also requires the following additional expertise if you are planning to automate portions
of the Application Engineering process:

"* The principles and use of appropriate software development methods.

"* Human-machine interface factors and related technology.

"• Database technologies supportive of computer-aided software engineering.

"* Host platform capabilities. The host platform is the hardware/software environment in which
the automated portions of the Application Engineering process execute.

"* Target platform capabilities. The target platform is the hardware/software environment in
which the application produced by the Application Engineering process executes.

2. PRODUCT DESCRIPTION

Name Process Support

P07rose Process Support is a description and explanation of the policies and
procedures by which application engineers produce a work product (the
Application Engineering process) and automated support for efficient
performance of the Application Engineering process.

Conton Process Support consists of five parts:

"*Applcadon fthwa*Pro¢ce Stindar. This establishes the policies and
procedures that govern the Application Engineering process within
the framework defined by the Process Requirements.

" Application Engineaft User's Guide. A document that guides
application engineers in how to perform the Application Engineering
process to produce a product.

"• Application Engineeing Environment. The environment consists of the
automated mechanisms that support the Application Engineering process.

" Application EngineeF, Environment Support Manual. This is a system
administration manual describing how to install and maintain the
Application Engineering Environment for a project. It provides ap-
propriate information on any vendor-supplied software technologies
contained in the environment.

" ApplIcation Eigineern Training Courses. This material is used to train
application engineers on how to perform the Application Engineering
process and how to use Application Engineering Process Support.

Lev-144



DE3.2 Pkm~ Support DwuekWMM AAivi*

V c • Members of the product family can be produced using the Application
Oitaia Engineering Environment by following the User's Guide.

"* Process Support prescribes an effective and efficient Application

Engineering process.

"* Process Requirements are fully satisfied by Process Support.

"* Process Support provides the ability to specify and generated the entire
product family supported by Product Implementation.

2.1 APPUCATION ENGINmIG PRocEsS STANDAD

Purpose The Application Engineering Process Standard gives an overview of the
standards, policies, and procedures that govern how application engineers
should practice application engineering satisfactorily.

Contet The Application Engineering Process Standard documents the essentials of
the Application Engineering process including what has to be done, why, and
who completes the work. It also identifies and prescribes standards for form and
content of application engineering work products.

Fonn and The form and structure of the Application Engineering Process Standard
S&UCMa should adhere to your organization's current standards for documenting

policies and procedures.

VferWaton * The policies and procedures documented in the Application Engineering
Criwia Process Standard are consistent with the Process Requirements.

* The policies and procedures documented in the Application Engineering
Process Standard do not conflict with other applicable organizational or
customer standards.

2.2 APPuCATION ENGINEERING UsE's GumE

Purpose The Application Engineering User's Guide provides a detailed description of
how application engineers should perform to comply with the Application
Engineering Process Standard. This guide expresses the decision-making
process that application engineers follow for a domain.

Content The Application Engineering User's Guide instructs application engineers on
how to build applications that have particular characteristics and explains how
to create, interpret, and evaluate Application Models properly. This guide
also designates and explains the effective use of automated mechanisms that
support the process.

Form and The User's Guide should conform to your organization's standards and
StruCture guidelines for documentation.

L"v-145



*iation The User's Guide describes how to build an application product.
Cr1 teia
2.3 APPuCAnTON ENGINF•NG ENvmoNM(vr

PurSCoe The Application Engineering Environment consists of all automated
mechanisms, described in the User's Guide, that support creating and
evaluating Application Models and generating and delivering equivalent
application products. The Application Engineering Environment automates
the mechanical portions of the process for increased consistency within a
product and less opportunities for undetected error in producing a product.

Content The Application Engineering Environment consists of both tools that are part
of the host operating system and tools developed during this activity. Together,
they support the Application Engineering process.

Form and * The tools adhere to the organization's standards and conventions for its
Structure software development environment.

* The view of the domain provided by the Application Engineering
Environment must facilitate the tasks application engineers undertake
when using it. The Application Engineering User's Guide describes these
tasks in detail.

Vr#fcation 0 All automated tools described in the User's Guide exist and behave as the
Criteria User's Guide states. All Adaptable Components produced during

Component Implementation Activities are accessible.

* Automated mechanisms contain no residual errors.

2.4 APPUCATION ENGINEERING ENVIRONMENT SUPPORT MANUAL

Pro'pose The Application Engineering Environment Support Manual describes how to
install the automated mechanisms of the Application Engineering
Environment.

Content The instructions contained in this manual will be specific to your organization.

Fonn and The form and structure of the support manual should adhere to your
Stucture organization's current standards for such work products.

Vficadon Automated mechanisms can be installed on supported platforms without
Crteia additional unspecified information or excessive effort.

2.5 APPLiC ON ENGINmNG TRAuiIG CouRS

Pa/poe These courses are used to train application engineers on how to perform the
Application Engineering process using the Process Support.

ContOnt The content is determined by how much expertise application engineers need
in your organization to effectively perform Application Engineering.

L4v-146



DE.32 Prmc Support Dewkopasnt MAwuv

Form wad The form and structure of the training courses should adhere to your
Sbuctaw organization's current standards for such work products.

Vafaion * The training course covers all topics application engineers need to know
Cruelia to effectively perform Application Engineering.

0 The material in the training courses is consistent with the knowledge and
experience in management and engineering of the anticipated attendees.

3. PROCESS DESCRIPTION

The Process Support Development Activity consists of all activities necessary to create appropriate
Process Support consistent with the Process Requirements for the domain. In many respects, this ac-
tivity involves work which is similar to that of a conventional software development project. You docu-
ment the standards and procedures that establish how Application Engineering is to be practiced. You
develop training courses and other support documentation that is used by the project support staff in
helping projects use the domain product effectively. Furthermore, if you decide to automate some or
all of the Application Engineering process (i.e., create an Application Engineering Environment),
then you apply software development methods to accomplish that goal. The Process Support
Development Activity consists of the five steps shown in Figure DE.3.2-1.

3.1 PROCEDURE

Follow these steps for the Process Support Development Activity. Perform these steps in the order

listed but iterate through them until you are satisfied with the work product as a whole.

Step: Document the Application Engineering Process Standard

Action Document the standard policies and procedures by which an application
engineer develops applications in the domain.

Input Process Requirements

Result Application Engineering Process Standard

Heuics* The Process Requirements defines the essentials of the Application
Engineering process. The Process Standard cannot conflict with the Pro-
cess Requirements, but you will need to extend the Process Standard to
provide a complete process description. The degree to which you plan to
automate the process is a major factor in how you elaborate Process Re-
quirements into a Process Standard.

This document elaborates the essentials prescribed by the Process
Requirements to establish the specific framework of the Application Engi-
neering process. Your description of the process should define what has to
be done, why it has to be done, and who completes the work. You should
provide procedures that explain how to complete the process (the se-
quence of tasks or task steps that have to be performed), when the work
is performed, and the criteria for measuring the quality of the work.

Lev-147



-------- --- ---- -- ---- -

aplmto EpnIcatkmngnerg

Deeo Uthe' Owde
a Iimio

a nomn Supr Mna

Impemntaio Eninerig nvion Ent wig*n

aW~ afWad~iWo &f

Fiur aE3-.Poe upr eeomn rcs

a a14



DIL3.2. ?mmu %ppart Dws4WAgau Actey

The purpose of standards is to promote a consistent approach in the
development of application products. Your description of the standards
should incorporate the standards used by your organization as well as
cover detailed process requirements.

Step: Develop the Application Engineering User's Guide

Actim Create a detailed guide for application engineers which instructs them on how
to perform every aspect of Application Engineering including manual steps
and effective use of any automated mechanisms.

Input * Process Requirements

* Application Engineering Process Standard

Result Application Engineering User's Guide

Hewisics 0 Describe all aspects of performing the Application Engineering process in
the User's Guide. This description should be sufficient for experienced ap-
plication engineers to understand and follow the process routinely (i.e.,
without assistance after initial training) and effectively. Within this de-
scription, explain effective use of the automated mechanisms provided by
the Application Engineering Environment.

* Determine the degree to which the Application Engineering process is
automated. Indicate additional aspects of the Application Engineering
process to automate (beyond what Process Requirements and the Process
Standard prescribe). Your guidance to the application engineer must re-
flect this decision. The choice of appropriate automation is governed by
Process Requirements, economics, and human factors:

- Process Requiremts. The Process Requirements may dictate
preferences on process and presentation automation mechanisms.
For example, it may dictate display of certain information in a
graphical form or the extent of automated support for Application
Modeling. If Process Requirements imposes such preferences, you
must either implement them or refer changes to the Process
Requirements Activity.

- Economics. You must determine whether reduced Application
Engineering effort will be sufficient to justify the cost of automat-
ing. That cost may include the acquisition of software tools and
hardware for application engineering projects, as well as the devel-
opment resources (both time, people, and material) from your or-
ganization. Additionally, you must also consider the costs of
maintaining and enhancing this automated support.

- Human Factors. Manual procedures are usually labor-intensive
and can result in many errors being introduced during any aspect

Lev-149



DWL32 Praca Suppou Dfvshogisin MIMk

of Application Engineering, particularly in the Application Pro-
duction phase. A project may lose much time trying to identify and
correct errors, and then repeating the process from where the last
error was introduced. Automation, whether specially-built or a
commercial tool, can reduce the effort needed during labor-inten-
sive activities. It can also help to reduce or eliminate errors in the
process. Another benefit of using automation is to reduce training
requirements for the application engineering staff. For example,
a project may need more training to perform Application Modeling
manually than if automated support were provided.

" Decide what expertise and experience application engineers are expected
to have. Write the User's Guide with the perspective and assumptions that
people with that expertise should have.

" Provide whatever domain knowledge application engineers will need to
perform Application Engineering correctly and effectively. You should
consider, as a minimum, paraphrasing the Product Requirements in a form
usable by application engineers. This information will help application en-
gineers understand the implications of decisions to be made in Application
Modeling.

" Describe what the application engineer should do when confronted with
a problem during Application Engineering. Include descriptions of
common mistakes and known bugs (and corresponding work-arounds).

" Provide advice to the application engineer on how to build systems with
particular characteristics (e.g., particular capabilities or performance).
Explain the meaning and purpose of different Application Models that
could be developed.

Step: Develop the Application Engineering Environment

Action Design, implement, and verify the automated mechanisms needed to support
the Application Engineering process.

Input * Application Engineering User's Guide

* Product Implementation

Rea&t Application Engineering Environment

Heurbit 0 The Application Engineering User's Guide specifies what aspects of the
Application Engineering process are automated. Revise the User's Guide
if this cannot be fully satisfied.

0 Creating an Application Engineering Environment is a software develop-
ment task. You must design an environment, implement that design in a
programming language (or via equivalent commercially-available soft-

Lev-150



DE.32. Ptoen Support Developmeal AUWi

ware technology), and test it to verify that the resulting environment im-
plements the Application Engineering User's Guide correctly.

Reduce your up-front development costs by taking advantage of available
technology to automate various activities within the infrastructure. For ex-
ample, there are planning and scheduling tools for project management;
object-oriented databases and user interface tools that can support speci-
fying an Application Model; testing, prototyping, and environment simu-
lation tools for validation; simulation and dynamic assessment tools for
assessment; and metaprogramming and system generation tools for prod-
uct generation. However, you must also consider what resources you will
need to integrate these or other technologies into a coherent
infrastructure.

Consider, as a minimum, automating the specification task of the Application
Modeling Activity and the Application Production Activity. These are the
core of Application Engineering and provide the most direct benefits.

Decide what code construction tools (e.g., compiler, linker, debugger) will
be used by application engineers to construct Application Product Soft-
ware. For code components, you must consider factors such as target hard-
ware and operating system and, if different from the host environment,
how the code will be tested (e.g., in a host-simulated target environment
or directly in the target environment) and created in executable form for
the target environment (e.g., cross-compilers).

Consider how the Generation Procedure fits into this environment. From the
perspective of Process Support, a Generation Procedure is a black-box that
can apply the decisions resolved by an Application Model to Adaptable Com-
ponents to create Application Product Software. If automated input of an
Application Model is not supported, then additional effort is required from
the application engineer to transform his Application Model into a form suit-
able for use by the Generation Procedure.

Step: Develop the Application Engineering Environment Support Manual

Action Create a manual that defines the information, resources, and steps required
to install the Application Engineering Environment for use by a project.

Input Application Engineering Environment

R•kWt Application Engineering Environment Support Manual

Heuristics Describe installation instructions for the automated mechanisms of the
environment. These instructions are specific to your organization. However,
consider, at a minimum:

* Inventory. This is a list of all materials (code, software utilities,
documentation) to be provided to the Project Support Activity.

Lev-151



"* DimL uil Medk. This desibes the media and formats on whivd the
automated mechanisms are provided to Project Support (e.q, tape,
disk). It shold also descre how to eiuact the o- -1 from die medium.

"• BuiadProceduw. These are instrucions on how to build the automated
environment from supplied source code.

"• SoJwr Awwroces. These describe software resources needed to build
and execute the automated mechanisms (e.g., operating system, compil-
er, supporting utility programs, version numbers). These also identify the
vendor and version of any commercially supported off-the-shelf software
that supports portions of the environment.

"* Hardware Rasurec. These describe the host platforms on which the
environment can successfully execute (e.g., CPU, operating system).

"* Limitations. These describe known discrepancies or unimplemented

features in the delivered environment and any known workarounds.

Step: Develop Training Courses

Action Develop courses to train managers and application engineers in the effective
use of the application engineering process and supporting mechanisms.

Iiqut • Application Engineering Process Standard

* Application Engineering User's Guide

0 Application Engineering Environment Support Manual

Rnuk Application Engineering Training Courses

Hewis*s The content of these courses will be determined by how much expertise your
organization believes application engineers need to practice Application
Engineering effectively and correctly. You should consider, at a minimum, the
following topics:

0 How to build systems in your domain using the Application Engineering
process.

* How to manage application engineering projects successfully.

* How to use the automated capabilities of the Application Engineering
Environment.

3.2 RIsK MANAGEMET

Risk The Application Engineering process will be inconsistent with the Process
Requirements.

Lev-152



DL.32. ftom Si Dwelmm Ahm"y

Implcadon Application engineers may not be able to produce applications that satisfy
customer requirements.

kit, ation Review the Process Standards with experienced managers and engineers to
check viability. Review the design and use of automated mechanisms with
experienced engineers to ensure that those mechanisms satisfy the Process
Requirements and Process Support documentation.

Rfsk Automation will not address the major difficulties of engineering applications
in a domain.

Impl&aon The Application Engineering process will be too labor-intensive, error-prone,
or difficult, increasing the cost required to build an application.

Mitadon * Review other Application Engineering processes to see what areas were
automated and the rationale for doing so.

"* Review past Application Engineering process efforts from other, similar
domains to see what areas of difficulties were encountered and how they
were resolved.

"* Measure and analyze the performance of the Application Engineering
process to help identify deficiencies.

Risk The Application Engineering process will be hard to follow (i.e., vague,
incomplete).

Implication Application engineers will have a difficult time developing applications. This
may cause excessive use of the project support staff. It may also cause incorrect
applications to be developed and increase the time required to deliver an
acceptable product to the customer.

Mi•taton Review the Process Support documentation with application engineers to see
what areas of the process are incomplete, inconsistent, or ambiguous. Have
them generate example work products, noting where they misinterpret or
misuse the documentation.

4. INTERACTIONS WITH OTHER ACTIVITIES

4.1 FEEDBAcK To ImaoRmAnON SouRcEs

Condtency The Process Requirements work product is incomplete, ambiguous, or
inconsistent.

Sowre Process Requirements Activity

Piaponse Describe specifically where the Process Requirements work product is
inadequate and suggest improvements. Proceed with the implementation of
Process Support as far as possible while the Process Requirements are being
updated.

Lev-153



C3 The Generation Procedure cannot be used in its curent form in the

Application Engineering process.

SGeneration Implementation Activity

Fpeme Describe how the Generation Procedure needs to be changed so that it will fit
within the Application Engineering process.

4.2 FEEDBACK FROM PRODUCr CONSUMERS

Con~gaa The Application Engineering process is difficult to use or is too
labor-intensive.

Sowe Project Support Activity

Response Identify where the problems exist and discuss, with the application engineers,
ways of reducing (or eliminating) these problems (e.g., through the use of
automation).

Condmaey Suggestions are made to automate various aspects of the Application

Engineering process.

Somre Project Support Activity

Response Consider the economic and human factors to help you decide whether to
pursue automating the suggested areas of the Application Engineering
process.

Condngency The Domain Specification is not satisfied.

Some Domain Verification Activity

RAponse • Correct errors as part of the next iteration of Process Support Development.

0 Refer capabilities that cannot be supported to Domain Analysis for
revision.

LAV-154



DE.4. PROJECT SUPPORT ACTIVITY

1. GETTING STARTED

The roject Support Activity is an actity of Domari Eineering for alidating Applicitio FEngn
Process Support and assisting projects in its use. Application Engineering Process Support is the ap-
plication engineering name for the Domain Implementation. To ensure that the baselined Domain
Implementation is usable and effective, Project Support independently validates it from the perspec-
tive of the product and process needs of the targeted application engineering projects. Project Support
assists appliation engineers in effective use of the process and supporting materials, through delivery
and installation, training, and consultation for the targeted project. Project Support trains application
engineers in how to perform the prescribed Application Engineering process, using any accompanying
automated support, and answers questions about the process, its documentation, and its automation.
Based on issues, problems, and future needs identified by application engineers, Project Support coor-
dinates feedback to the rest of Domain Engineering for improvements in the supported process or
products of application engineering.

1 Om icnvs

The objectives of the Project Support Activity are to:

"* Evaluate the effectiveness and quality of Domain Implementation for use by application
engineering projects

"* Provide customer support to application engineering projects in the understanding and use of
Domain Implementation

"- Provide a conduit bywhich the needs of application engineering projects can influence domain
improvements and evolution

1.2 RQuIRm ImRmAnoN

The Project Support Activity requires the following information:

"* Domain Definition

"* Domain Implementation

1.3 REQumED KNOWLmEGE AND EXPmE CE

The Project Support Activity requires domain and software knowledge and experience in:

Lev-15$



"• The methods, practices, and solutions of application development in the domain

" Installing and evaluating software products and their documentation

"* Developing and teaching training courses

"* Assisting engineers and managers in the use of process documentation and automation

. PRODUCT DESCRIPTION

The Project Support Activity produces no work products. Instead, it is a service activity to application
engineering projects within the domain.

3. PRCICESS DESCRIPTION

The Project Support Activity consists of two steps shown Figure DE.4-1. The first, Domain Validation,
is ongoing and must certify each baseline Domain Implementation as it becomes available. The se-
cond, Domain Delivery, is initiated at the beginning of each targeted application engineering project
and continues until that project's termination.

Fiue DF.a4-1. Poef $ipm Pon

Stp:Domain Validation Acti;.7ty

applic Fionegineern D-.Project' needs, a speciidn h o anDfnto

3. P~oc1ua

Follow these steps for the Project Support Activity.

Step: Domain Validation Activity

Acdon Certify that baselined, deliverable Domain Implementation will satisfy
application engineering projects' needs, as specified in the Domain Definition
(available in future releases).

Input 0 Domain Definition

* Domain Implementation

Rka* None

Lev-156



DE.4. PrOj.M Support AidVy

HaLua * Review the Domain Plan and Domain Definition from the perspective of
application engineering projects. Ensure that the product and process
needs of projects are properly represented. Advise the rest of Domain En-
gineering on the realistic product and process needs of application
engineering projects.

Perform an independent evaluation of each baseline of the Domain
Implementation as it becomes available. Evaluate whether it properly sat-
isfies and balances the intended mix of general business objectives and
specific application engineering project/customer needs.

Perform independent validation, including extensive, scenario-based
testing of the (integrated) Product Implementation and Application Engi-
neering Environment portions of the Domain Implementation baseline.
Evaluate the correctness and usability of the Application Engineering
User's Guide and Application Engineering Environment Support Manual
as they relate to use of the Product Implementation and Application
Engineering Environment.

Attempt to build typical products that reflect realistic project experience
on existing systems in the domain. Identify capabilities or characteristics
of those products that the Domain Definition accommodates but that are
not attainable with the provided Domain Implementation baseline.

Evaluate the impact of the Domain Implementation baseline on the
efficiency and effectiveness of application engineering projects. Identify
improvements in realistic and practical Domain Implementation usability.

Step: Domain Delivery Activity

Action Deliver Domain Implementation to an application engineering project, assist
with its use, and identify needed product or process improvements (available
in future releases).

Input Domain Implementation

Result None

Heuistcs * Initiate an instance of this activity upon creating each targeted application
engineering project; continue this activity until the project terminates.

" Provide copies of process documentation (i.e., the Application Engineering
Process Standard and the Application Engineering User's Guide) to the en-
gineers and managers of the application engineering project.

" Install the Application Engineering Environment (and subsequent
upgrades), including the Adaptable Components from the Product
Implementation, for project use and check it for proper operation. Follow
installation procedures documented in the Application Engineering
Environment Support Manual.

Lev-157



"Use Application Engineering ¶Iaining Courses to provide formal instruction
to application engineers (including project managers) in the proper and
effective use of the Application Engineering process and the associated Pro-
cess Support and Product Implementation work products. Explain use of the
Application Engineering Process Standards and Procedures for under-
standing of the process in-the-large and the Application Engineering
User's Guide for understanding and performing the process in-the-small.
Explain the use of the Application Engineering Environment as described
in the User's Guide.

" Provide consultation services to application engineers as they perform
Application Engineering. Consulting requires extensive domain knowl-
edge to answer application engineers' questions accurately and fully. Con-
sultants should be knowledgeable in all aspects of Domain Implementa-
tion. There also needs to be a core of expert consultants who are
sufficiently familiar with other domain engineering work products to pro-
vide complete, detailed, in-depth information, rationales, and assistance
when complex problems are encountered by a project. In small organiza-
tions, the entire domain engineering team may be called on as a consulting
resource.

" In response to the delivery services provided, application engineers will
identify problems, improvements, and future needs that Domain Engi-
neering should consider for possible action. Some of these ideas will relate
directly to meeting customers' needs while others will relate to how effi-
ciently application engineers can use the process and associated domain
assets. Properly record and communicate these ideas and their motiva-
tions to the rest of Domain Engineering as feedback from application engi-
neering. This is a key part of Project Support and is essential to continual
project and market responsive improvement and evolution of a domain.

3.2 RiSK MANAGEMENT

Risk The needs of a particular application engineering project will conflict with a
simple interpretation of prescribed standards and procedures.

Implication The project will be forced to work in conflict with that interpretation and to be
less effective and efficient.

Migadion Ity to interpret standards and guidelines flexibly so that they best fit the needs
of each project. Be aware of variations in the Procces Support, particularly in
environment installation, that support different needs. Tailor consultation and
training to each particular project's needs.

Risk Changes in the circumstances of a project may conflict with the previous
interpretation of prescribed standards and procedures.

Implication The project will be forced to work around obsolete support and will be less
effective and efficient than necessary.

L1v-158



DE.4.?1u StUWA 4"

SReconsider the support given to a project whenever rounstances change
significantly. Be prepared to adjust the environment, trainng aW consulting
advice to fit current needs better.

4. INTERACTIONS WITH OTHER ACTIVrES

4.1 FEaMED CK TO INMRMAnON SOUR=cs

C&V&WN&7 Application engineers are having difficulty using the Application Engineeing
process or Domain Implementation to develop applications.

SWce Process Support Development Activity

lPWNs • Suggest better ways to the project for performing the process within the
prescribed standards.

0 Document the nature of the difficulties and suggest improvements in the
prescr'bed process or in its documentation, automation, or training.

Coew=7 Particular, noncommon customer requirements cannot be expressed in an
Application Model.

Sum * Domain Definition Activity

* Process Requirements Activity

* Process Support Development Activity

kspea • Identify unrecognized domain variations that application engineers need.

* Suggest to the project how it can best work around current limitations.

Cuw y Projects cannot build applications that provide required behavior or that
satisfy required constraints on resource usage (e.g., time, space, reliability).

suow= * Domain Analysis Activity

• Domain Implementation Activity

kwPOW • Document the requirements or constraints that cannot be satisfied.

* Suggest to the project how to best remedy the behavior or resource usage.

4.2 Fmunxn.c FROM PRD•ucr CoNsumEts

None

Lev-159



kk ;;k-.

Thus page inentionally left blank-

Ley-16O



AE. APPLICATION ENGINEERING OVERVIEW

1. GETTING STARTED

Application Engineering is a Synthesis process for creating and supporting an application product that
satisfies specified customer requirements. A product is represented by a set of associated work prod-
ucts that result from analysis of those requirements. Application Engineering is characterized by a
comprehensive life-cycle process for the management, analysis, production, and support of the mem-
bers of a product family. This is similar in purpose to a conventional software development process,
but is tailored to the problems and the needs of projects in a particular business area. Such a
business-area focus allows for the systematic reuse of standardized work products within and among
projects in that business area.

Domain Engineering identifies a set of characteristic decisions for a business area that determine how
a product can be tailored to meet particular needs. It also provides standardized work products in a
form that supports tailoring to thosc decisions. Application engineering concentrates on the analysis
of customer requirements to resolve those decisions. The result is a model of a corresponding product
that can be evaluated according to those requirements. When a model is found to be acceptable, it is
used to drive the generation of tailored work products that implement the model. After the resulting
work products are verified to the model, they are delivered to customers for further evaluation and
use.

1.1 OBJ-cTIVs

The objectives of Application Engineering are to:

"* Understand the needs of customers, balancing concerns of cost versus value, to produce a
product that fulfills those needs most effectively

"* Organize and direct resources for the production and support of the product

"* Produce software and documentation that support the delivery and use of the product

"* Leverage standardized process and work products for a domain to produce required results
effectively, predictably, and profitably

1.2 REQUIRED INmORMAION

Application Engineering requires the following information:

* Application Engineering Process Support

* Customer requirements

Lev-161



AL AUI~M3Ias E.VWmh

1.3 REQunRED KNOWLEDGE AND ExpRINmcz

Application Engineering requires domain, business, and software knowledge and experience in:

"* The problems that the products in the domain are intended to solve and the engineering
tradeoffs to be considered in creating a viable solution

"* Understanding and interpreting customer requirements and developing applications that

satisfy those requirements

"* The management, production, and delivery of software work products

"* How to use the Application Engineering Process Support to develop an application

"• The information required by the Application Engineering process employed by the project

2. PRODUCT DESCRIPTION

Application Engineering creates four work products:

" Project Plan. The Project Plan establishes standard practices and procedures and defines tasks
for incremental development with milestones and resource allocations.

" Application Model. The Application Model describes a deliverable system in terms of
requirements and engineering decisions.

" Application Product. The Application Product consists of an application and associated user
documentation work products. It is derived mechanically from the Application Model to
provide a capability specified by customer requirements.

" Delivery Support. Delivery Support includes testing, installation, and training materials. It is
derived mechanically to be consistent with the Application Model to support the delivery of
the Application Product.

3. PROCESS DESCRIPTION

The Application Engineering process defined here is prototypical in the sense that an objective of
Domain Engineering is to define such a process tailored to the needs of a domain. This Application
Engineering process consists of the four activities shown in Figure AE-1.

3.1 PROCEDURE

Step: Project Management Activity

Action Plan, monitor, and control project resources to deliver a product.

Input Customer requirements

Result Project Plan

Lev-162



AL -Fbd Eoek Owro

•ru

-J-------------------

I

Proect

Hmri.•ic Institute policies andproeue n codnewihteApication

Engneein rces wandrdy Application EgneigPoesSp

Project S rc t i aDeivr an

sOperation SSuport

Crae a pa htrfet h rcs eie andspotdb

to Customer

FigureAppl. APotop Appfication Engireeris g Proe.m

Institute policies and procedures in accordance with the Application
Engineering Process Standard of Application Engineering Process Sup-
port. Allocate time and budget for personnel to receive needed training in
use of Application Engineering Process Support. Domain Engineering
Project Support staff will deliver, including installing automation, and
support effective use of Application Engineering Process Support.

opCreate a plan that reflects the process defined and supported by
Application Engineering Process Support. Revise the plan to reflect unex-
pected progress or delays.

*For more accurate monitoring and control of the effort, set specific,
measurable objectives and schedule repeated short iterations through the
process to achieve thein. Build the required product incrementally and re-
view interim capabilities with the customer and users in order to maximize
opportunities for feedback that can ensure timely delivery of a valid result.

Coordinate development and performance of the plan with Domain
Management both to exploit any forthcoming domain development and to
schedule domain improvements (in process or product) needed by this
project.

Lev163



Step: Application Modelung At•ivity

Actn Resolve decisions to specify a required product, based on an analysis of
customer requirements, and evaluate it with respect to customer or technical
constraints on an acceptable solution.

/WWt Customer requirements

RP.9t Application Model

Heuriafc The User's Guide of Application Engineering Process Support defines an
application modeling process for products within a domain. This process
provides a framework, notation, and mechanisms for:

- Specfation. Analyzing customer requirements and
expressing them in an Application Model as a set of decisions
that describe an Application Product which should satisfy
those requirements.

- Validation. Evaluating the functional adequacy of a modeled
Application Product by analyzing the static (consistency and
completeness) and dynamic (execution behavior in a simu-
lated environment) characteristics implied by the Application
Model.

- Aswmnent. Evaluating relevant properties of alternative
Application Models to determine, qualitatively and quantita-
tively, which will result in a system that best satisfies the cus-
tomer's operational and product quality requirements.

The Application Engineering Environment provides associated
automated support for this process.

Perform the prescribed application modeling process to create an
Application Model that expresses customer requirements. Extend the
model, as necessary, to reflect engineering decisions needed to specify a
complete product. Review your understanding of those requirements, as
expressed in the model, with customer (and user) representatives.

" Use provided mechanisms to specify, validate, and assess alternative
Application Models and review the results with customer representatives.
If one of the provided mechanisms is simulated execution, review use of
the simulated application with customer and user representatives.

" Based on your perception of the risks, rapidly build an approximate (i.e.,
complete but inaccurate) model of the complete product or partial models
of poorly understood aspects of the product. For parts of the customer re-
quirements that are incomplete or unclear, create alternative (partial)
models that can be compared in review and evaluation with the customer.

Lev-164



AL. Appmfon Eaghscdng Oveuva

" If the implications for the Application Product of aspects of an Application
Model are not clear, seek clarification and elaboration from Domain Engi-
neering Project Support staff. Project support can determine how deci-
sions (individually and in combination) affect each of the work products
that will make up the Application Product.

" When some aspect of customer requirements cannot be expressed
accura,'ely in an Application Model or acceptable properties cannot be at-
tained for the product, seek Domain Engineering assistance. For particu-
lar problems, there may be workarounds or alternative ways of describing
particular facets of the product.

Step: Application Production Activity

Action Create a standardized product and accompanying delivery support work
products in accordance with an Application Model.

Input Application Model

Ra&t * Application Product

* Delivery Support

Hewics 0 Application Engineering Process Support provides a mechanical, possibly
automated, process for creating an Application Product and Delivery Sup-
port, given a valid Application Model representing customer
requirements and engineering decisions.

* For each work product that makes up the Application Product and
Delivery Support, there is a manual (documented in the User's Guide) or
automated (implemented in the Application Engineering Environment)
generation procedure, driven by the Application Model, for constructing
a tailored version of the work product.

* In some cases, there may be facilities in Application Engineering Process
Support for special component implementation. These facilities support
the direct construction of highlyvariable parts of particular work products
without violating the integrity of the Application Model. Such modifica-
tions generally entail greater effort and risk of error, both initially and
when requirements change.

Step: Delivery and Operation Support Activity

Acion Deliver the Application Product to the customer, support its use, and evaluate
its effectiveness.

Input 0 Application Product

* Delivery Support

Le-165



AL Appfiudos Eagt!sw.1s~ ow

ARM& None

Hewisdes Delivery Support provides the mechanisms needed to deliver an
Application Product to the customer. Delivery includes installing the Ap-
plication Product into its operational environment and training users in its
operation. Procedures for accomplishing this are part of the User's Guide
of Application Engineering Process Support with additional specifics
included as part of Delivery Support.

Application engineers provide consulting assistance as needed for users to
become effective with the Application Product. This encompasses both ini-
tial training and subsequent troubleshooting if unexpected behaviors are
detected.

Operation support includes analyses of the effectiveness of the
Application Product for users. Application engineers should identify and
document any problems encountered and any additional or changed needs
revealed as the Application Product is used.

3.2 RISK MANAGEMENT

None

4. INTERACTIONS WITH OTHER ACTIVITIES

4.1 FEEDBACK TO INFORMAnON SOURCES

Contingecy The standardized product family is inadequate to support the needs of
particular customers.

Source Domain Engineering

Response Describe why the standardized product family is deemed inadequate, and
suggest how it can be improved.

Condngency The standardized Application Engineering process is inefficient or leads to

less-than-ideal results for this project.

Source Domain Engineering

Response Describe why the standardized Application Engineering process is deemed
inefficient or inadequate, and suggest how it can be improved.

Contingency The Application Engineering Process Support provided is incomplete or
deficient.

Source Domain Engineering

Response Describe the inadequacies in the Application Engineering Process Support.
Indicate which sections are incomplete or deficient. These may include:

Lev-166



AL Appilaton E*ýOvwvim

missing work product families, an incomplete User's Guide, errors in the
User's Guide, improperly described Adaptable Components, malfunctioning
generation procedure(s), and bugs in interface software provided by Domain
Engineering.

4.2 FFE•sAcK FRoM PRoDucw CoNsUMRns

Condngeucy The customer requests new or modified capabilities for the system.

Source Customer

Response • Build a new version of the system.

* Reject the suggestions as out of scope.

* Ask Domain Engineering to make necessary changes in the domain.

Contingency The customer identifies system anomalies, changes to the target environment,
inadequate system performance, or inadequate reliability.

Source Customer

Response * Correct system anomalies, accommodate changes to the target
environment, tune the system.

"* Reject changes as out of scope.

" Ask Domain Engineering to make necessary changes in the domain.

Lw-167



Thiwpag itentionaI4y left blwdck



APPENDIX: MATURITY ASSESSMENT AND
FUTURE EVOLUTION

This is the first release of the Reuse-Driven Software Processes Guidebook. This release describes
two reuse-driven software processes that are oriented toward different stages of reuse capability from
the perspective of the Consortium's RCM. A complete Reuse-Driven Software Processes Guidebook
would describe a continuum of reuse-driven software processes from which an organization, at any
stage of reuse capability, could derive the definition of a suitable process for that organization.

As a whole, the Consortium considers the opportunistic process description in Part Opp of this
guidebook to be at the exploratory level in the following maturity scheme. The leveraged process
description in Part Lev is approaching the developmental level in the following maturity scheme:

" Exp/oratory. Many sections are immature, incomplete, or missing; incomplete sections are
limited in detail.

"* Dewlopmentad. All sections are present but some are incomplete; complete sections have been
used on at least one pilot project or case study.

"• Functional. All sections are complete and have been independently validated in use on several
pilot projects.

"• Production. All sections are complete, validated, and constitute a mature representation of
organizational policies and concerns.

Tl advance beyond functional-level maturity, the guidebook must be refined to meet particular
standards for production use in a particular organization. Quality improvements can continue based
on organizational experience with using it.

The Consortium will continue to refine the guidebook until all its sections reach functional-level
maturity. This goal assumes pilot project participation by government and industrial organizations.
Such participation is essential to improving the depth and quality of the guidebook.

At this stage, the Consortium considers the guidebook to be usable in the following ways:

"* On pilot and low-risk production projects

" Under the guidance of a technologist, acting as a transfer agent, who can interpret, elaborate,
and fill in guidebook material sufficiently for other participants to be effective in performing
Synthesis

"* With Synthesis-novice managers and engineers as primary participants, to supply essential
domain expertise and to be trained in Synthesis practices

AppI



-reff Uvory AMWW mi Now Naia

The maturity scheme also applies to the individual sections in Part Opp and Part Lev of the guidebook.
Tables App-i and App-2 show the current maturity of each section in Part Opp, Opportunistic
Synthesis, and in Part Lev, Leveraged Synthesis, respectively.'

Table App-i. Maturity Scheme for Part Opo, Opportunistic Synthesis

Section Maturity

OV. Overview Exploratory

DE. Domain Engineering Overview Exploratory

DE.i. Domain Management Exploratory

DE.2. Domain Analysis Exploratory

DE.2.1. Domain Definition Activity Exploratory

DE.2.2. Domain Specification Activity Exploratory

DE.2.2.1. Decision Model Activity Exploratory

DE.2.2.2. Product Requirements Activity Exploratory

DE.2.2.3. Process Requirements Activity Exploratory

DE.2.2.4. Product Design Activity Exploratory

DE.2.2.4.1 Product Architecture Activity Exploratory

DE.2.2.4.2 Component Design Activity Exploratory

DE.2.2.4.3 Component Design Activity Exploratory

DE.2.3. Domain Verification Activity Exploratory

DE.3. Domain Implementation Activity Exploratory

DE.3.1. Product Implementation Activity Exploratory

DE.3.1.1. Component Implementation Activity Developmental

DE.3.1.2. Generation Implementation Activity Exploratory

DE.3.2. Process Support Development Activity Exploratory

DE.4. Project Support Activity Exploratory

DE.4.1 Domain Validation Activity Omitted

DE.4.2 Domain Delivery Activity Omitted

AE. Application Engineering Overview Exploratory

AT. Advanced Topics Omitted

Ap-2



Appendiz Maturity Acunmen and Future Evwohoa

bble App-2. Maturity Scheme for Part Lev, Leveraged Synthesis

Section Maturity

OV. Overview Exploratory

DE. Domain Engineering Overview Exploratory

DE.1. Domain Management Exploratory

DE.2. Domain Analysis Exploratory

DE.2.1. Domain Definition Activity Developmental

DE.2.2. Domain Specification Activity Exploratory

DE.2.2.1. Decision Model Activity Developmental

DE.2.2.2. Product Requirements Activity Developmental

DE.2.2.3. Process Requirements Activity Exploratory

DE.2.2.4. Product Design Activity Exploratory

DE.2.2.4.1 Product Architecture Activity Exploratory

DE.2.2.4.2 Component Design Activity Exploratory

DE.2.2.4.3 Component Design Activity Exploratory

DE.2.3. Domain Verification Activity Exploratory

DE.3. Domain Implementation Activity Exploratory

DE.3.1. Product Implementation Activity Exploratory

DE.3.1.1. Component Implementation Activity Developmental

DE.3.1.2. Generation Implementation Activity Exploratory

DE.3.2. Process Support Development Activity Exploratory

DE.4. Project Support Activity Exploratory

DE.4.1 Domain Validation Activity Omitted

DE.4.2 Domain Delivery Activity Omitted

AE. Application Engineering Overview Exploratory

AE.1. through AE.4. Omitted

AT. Advanced Topics Omitted

App-3



This page minentionally left blank.

Ap-I



LIST OF ABBREVIATIONS AND ACRONYMS

ADARTS Ada-based Design Approach for Real-Tune Systems

AE Application Engineering

AT Advanced Topics

DE Domain Engineering

DOD Department of Defense

ESP Evolutionary Spiral Process

IV&V Independent Verification and Validation

Lev leveraged

Opp opportunistic

OV Overview

RCM Reuse Capability Model

SSS System/Segment Specification

STARS Software Ibchnology for Adaptable Reliable Systems

Syn Synthesis

TLC Traffic Light Control Software System

Abb-1



Mh page zntentiona4 left blank-

Abb-2



GLOSSARY

Abstrac component A family of components characterized by a defining
abstraction and the decisions that are needed to dis-
tinguish among the members of the family (or to
extract a concrete component).

Abstraction A description of a collection of things that applies
equally well to any one of them. Also, a concept that
denotes the common properties of a family.

Activity A step of a process for producing and/or evaluating
work products to satisfy objective(s) supporting that
process. An activity comprises other steps.

Adaptable Component A Domain Engineering work product that
implements a Component Design. See Abstract
component.

Application The hardware, software, and manual procedures that
characterize a system.

Application Engineering An iterative process for the design and development
of a product that satisfies specified customer require-
ments. Its work products are an Application Model
and an Application Product. For the leveraged Syn-
thesis process, see Application Modeling (Activity),
Application Production (Activity), Delivery and Op-
eration Support (Activity), and Project Management
(Activity).

Application Engineering Environment Automated support provided for a prescnrbed
Application Engineering process. See Process
Requirements and Process Support and Infrastructure.

Application Engineering Process Support A Domain Implementation, from the perspective of
an Application Engineering project.

Application Model A set of resolved requirements and engineering
decisions, as specified by a Decision Model, that
(partially) determine an instance of a family of
systems. See Application Modeling Notation.

Glo-1



Glossary

Application Modeling (Activity) The Application Engineering activity that produces
a validated Application Model sufficient to derive a
production-quality Application Product that satisfies
customer requirements. See Specification (Activity),
Validation (Activity), and Assessment (Activity).

Application Modeling Notation A notation for expressing an Application Model such
that a complete Application Model is sufficient to
distinguish uniquely any system of a domain. See
Process Requirements.

Application Product Software artifacts, including code and documentation,
produced by the Application Production activity to satisfy
customer requirements.

Application Production (Activity) The Application Engineering activity that produces an
Application Product, as specified by an Application Mod-
el, and Delivery Support. See Generation (Activity) and
Special Components Implementation (Activity).

Architecture A set of design structures that characterize a system
and each associated artifact (i.e., work products).

Assessment (Activity) The Application Modeling activity that produces
analyses of the degree to which alternative
Application Models satisfy the operational (e.g., per-
formance, reliability) and product quality
requirements of the customer.

Business area A coherent market characterized by (potential)
customers possessing similar needs.

Business-area knowledge Information that characterizes the market for a domain
including.

"* Current and future customer and contract
profiles

"• Projected growth in contracts (or sales)

"* Value and marketability of features

"* Market analyses

Business-area organization An organization whose mission is the production and
delivery of products for customers in a specified
business area.

GIo-2



GoomUY

Business objectives The needs of a business-area organization that
determine the scope and extent of a domain.

Candidate Components A set of previously-built components that have been
judged as qualified for potential use as raw material
in the engineering of Adaptable Components.

Commonality A characteristic of a domain that corresponds to a
similarity among members of the associated family of
systems. See Variability.

Component A work-product fragment whose production is a
managed work assignment. See Abstract component.

Component Design The element of a Product Design that defines the
design of a component identified in a Product
Architecture.

Component Design (Activity) The Domain Analysis activity that creates a
Component Design.

Component Implementation (Activity) The Domain Implementation activity that creates
Adaptable Components, as specified by a Component
Design.

Constraint A limitation on decision(s).

Customer The person(s) or organization(s) that specify the
requirements, accept, and authorize payment for a
product.

Customer requirements A description of the capabilities, as understood by
customers, required of a system and any constraints
on the engineering of that system.

Decision A choice among allowable alternatives.

Decision constraint A set of constraints on the resolution of
interdependent decisions.

Decision group A logical grouping of decisions in the Application
Modeling Notation that allows the application engi-
neer to separate concerns when describing a system.

Decision Model The element of a Domain Specification that defines
the abstract form (concepts, decisions, and structure)
of an Application Modeling Notation.

Decision Model (Activity) The Domain Analysis activity that creates a Decision
Model.

Gio-3



Decision specification A specification of the set of decisions that suffice to
distinguish among members of a family.

Delivery and Operation Support (Activity) The Application Engineering activity that delivers an
Application Product to customers and supports its
use.

Delivery Support Software artifacts produced by the Application
Production activity to support the Delivery and
Operation Support activity for delivery of an
Application Product to customers.

Dependency constraint A relationship specifying how decisions made by an
application engineer limit subsequent decisions.

Derived requirements Requirements that indicate characteristics specific to
particular systems in the domain based on the deci-
sions that an application engineer expresses in an
application model.

Design structure A set of relationships among a set of components that
represent some characteristic of the aggregate. Ex-
amples for a program are dependency structures that
define a program's static structure and process
structures that define its dynamic behavior.

Document A documentation component, including textual and
graphical artifacts.

Domain A product family and an associated production
process supporting a product line.

Domain Analysis (Activity) The Domain Engineering activity in which domain
knowledge is studied and formalized as a Domain
Definition and a Domain Specification. The exper-
tise in a business area is formalized to create stan-
dards for problem descriptions and corresponding
solutions. See Domain Definition (Activity), Domain
Specification (Activity), and Domain Verification
(Activity).

Domain Assumptions The element of a Domain Definition that defines the
guiding assumptions and justifications of domain
scope and extent.

Oio-4



GloNss,

Domain Definition An informal. description of the scope, extent, and
justification for a domain. See Domain Synopsis,
Domain Glossary, Domain Assumptions, and
Domain Status.

Domain Definition (Activity) The Domain Analysis activity that creates a Domain
Definition.

Domain Delivery (Activity) The Project Support activity that assists Application
Engineering projects in the effective use of Application
Engineering Process Support.

Domain Engineering An iterative process for the design and development
of (1) a product family and (2) an Application Engi-
neering process for producing members of that fami-
ly. See Domain Management (Activity), Domain
Analysis (Activity), Domain Implementation
(Activity), and Project Support (Activity).

Domain evolution Revision of a Domain Definition, Domain
Specfication, and associated Application Engineering
Process Support to reflect changes in domain scope.

Domain Glossary The element of a Domain Definition that defines the
terminology of a domain.

Domain Implementation A Product Implementation and Process Support that
satisfies a Domain Specification.

Domain Implementation (Activity) The Domain Engineering activity that creates
support for Application Engineering projects in the
form of a Domain Implementation. See Product Im-
plementation (Activity) and Process Support
Development (Activity).

Domain knowledge Knowledge and expertise characteristic to a domain-

"* Relevant scientific theory and engineering
practice

"• Capabilities and uses of existing systems

"• Past system development and maintenance
experience and work products

"* Potential developments in related or
supporting technology

"* Potential changes in customer needs

01o-5



Gkosy

Domain Management (Activity) The Domain Engineering activity that plans,
monitors, and controls the activities and resources of
a Domain Engineering organization and which coor-
dinates domain devIopment and evolution with client
Application Engineering projects.

Domain objectives An element of the Domain Plan Master Plan that
defines the goals of domain development.

Domain Plan Schedules, budgets, assignments, and progress
evaluations for the management of a Domain
Engineering organization.

Domain Specification A specification of a standardized Application
Engineering process and product family for a do-
main. See Decision Model, Product (Family)
Requirements, Process Requirements, and Product
(Family) Design.

Domain Specification (Activity) The Domain Analysis activity that creates a Domain
Specification.

Domain Status The element of a Domain Definition that specifies
the current scope, extent, and viability of a domain
relative to its objectives.

Domain Synopsis The element of a Domain Definition that is an
informal description of a domain.

Domain Validation (Activity) The Project Support activity that evaluates the
quality and effectiveness of Application Engineering
Process Support from the perspective of Application
Engineering project needs.

Domain Verification (Activity) The Domain Analysis activity that evaluates a
Domain Implementation to determine compliance
with the corresponding Domain Definition and
Domain Specification.

Entrance criteria Conditions that must be met before an activity can be
started.

Exit criteria Conditions that must be met before an activity can be
considered successfully completed.

Family A set of things that have enough in common that it
pays to consider their common characteristics before
noting specific properties of instances.

to-.6



Feasibility The degree to which an objective is amenable to
solution with predictable resources and risk.

Feedback Information communicated by the consumer of a
work product to its producer regarding issues in the
correctness, quality, and viability of the product.

Generation (Activity) The Application Production activity that applies a
Generation Procedure to an Application Model,
Adaptable Components, and Special Components to
produce software work products.

Generation Design The element of a Product Design that specifies a
Generation Procedure (i.e., the mapping from a
Decision Model and Product Architecture to work
products for an application).

Generation Design (Activity) The Domain Implementation activity that creates a

Generation Design.

Generation Implementation (Activity) The Domain Implementation activity that creates a
Generation Procedure.

Generation Procedure The definition of a procedure for selecting, adapting,
and composing components to create a work product.

Goal A specific, time-related, measurable target.

Implicit requirements Requirements that indicate characteristics that are
common to all systems in a domain. (CommENr. These
are referred to as implicit because they are implicit to
an Application Model [i.e., there are no decisions in
the Decision Model that affect them]).

Infrastructure Those mechanisms or attributes of an Application
Engineering Environment that are not determined
by the Domain Specification. See Process Support
Development (Activity).

Instantiation Creating a thing from a representation of an
abstraction denoting a set of such things.

Iterative process A process in which completion occurs only after
repetition of producing and using activities results in
refined work products.

Glo-7



Glossy

Legacy Products The element of a Domain Definition that is a
collection of work products (or portions thereof) that
are potentially useful raw material for developing
other Domain Engineering work products. Legacy
Products are derive from existing systems in the
domain.

Life cycle A sequence of distinct states of an entity beginning
with its initial conception and ending when it is no
longer available for use.

Metaprogram A description of an abstract component that is
sufficient, given a set of resolved decisions, to
instantiate a corresponding concrete component.

Metaprogramming A method for creating abstract components and
extracting concrete components from them. See
Instantiation.

Metaprogramming notation A notation for defining and instantiating
metaprograms.

Method Guidance and criteria that prescribe a systematic,
repeatable technique for performing an activity.

Methodology An integrated body of principles, practices, and
methods that prescribe the proper performance of a
process.

Model A representation of a thing from which analysis
provides approximate answers to designated
questions about the thing itself.

Module A software component that consists of design, code,
documentation, and test artifacts.

Objective The intended or desired result of a course of action.

Plan A designation of tasks and resource allocations for
accomplishing a specified objective.

Process A (partially) ordered set of steps, intended to
accomplish specified objective(s).

Process engineering The construction of a process appropriate to
accomplish the objectives of an organization or
project.

G0o4



Process Requirements The element of a Domain Specification that defines
an Application Engineering process and concrete
forms (syntax) of an associated Application Modeling
Notation.

Process Requirements (Activity) The Domain Analysis activity that creates Process
Requirements.

Process Support Standards and procedures, in the form of documents
and supporting automation, that institute a standard
Application Engineering process, as specified by a
Process Requirements. See Application Engineering
Environment.

Process Support Development (Activity) The Domain Implementation activity that creates
Process Support.

Product The aggregation of all work products resulting from

a process or activity.

Product Architecture See Product (Family) Architecture.

Product Architecture (Activity) The Domain Analysis activity that creates a Product
Architecture.

Product Design See Product (Family) Design.

Product Design (Activity) The Domain Analysis activity that creates a Product
Design.

Product Family A family of products. See Family.

Product (Family) Architecture The element of a Product Design that is a specification
of the (adaptable) architecture of the products for a
system (possibly as a set of components).

Product (Family) Design The element of a Domain Specification that defines
how an Application Model which satisfies the Deci-
sion Model determines the structure and content of
an Application Product and Delivery Support. This
includes the criteria by which components are se-
lected and adapted to create fragments which are
then composed into complete work products.

Product (Family) engineering The development and evolution, consistent with a
Domain Definition and Decision Model, of Product
Requirements, Product Design, and Product
Implementation corresponding to a product family.

Gio-9
L________________



Glmoay

Product (Family) Implementation The implementation of a Product Design as sets of
Adaptable Components and Generation Procedures.

Product (Family) Requirements The element of a Domain Specification that defines
the requirements of systems in a domain relative to
a Decision Model.

Product Implementation See Product (Family) Implementation.

Product Implementation (Activity) The Domain Implementation activity that creates a
Product Implementation. See Component Implemen-
tation (Activity) and Generation Implementation
(Activity).

Product line A collection of (existing and potential) products that
address a designated business area.

Product Requirements See Product (Family) Requirements.

Product Requirements (Activity) The Domain Analysis activity that creates a Product
Requirements.

Program (1) An aggregation of software components that,
when integrated with hardware, operates as a unit.

(2) A directed, funded effort to acquire, develop, or
maintain a product(s).

Project An undertaking requiring concerted effort, which is
focused on developing and/or maintaining a specific
product. Typically, a project has its own funding, cost
accounting, and delivery schedule.

Project Management (Activity) The Application Engineering activity that plans,
monitors, and controls Application Engineering pro-
cess execution and provides feedback to Domain En-
gineering on desired product family and Application
Engineering process modifications.

Project Plan Schedules, budgets, assignments, and status
evaluations for the management of an Application
Engineering project.

Project Support (Activity) The Domain Engineering activity that validates
Application Engineering Process Support, delivers it
to application projects, and supports its use. See Do-
main Validation (Activity) and Domain Delivery
(Activity).

Gio-lO



Gomz•

Reuse Library The portion of an Application Engineering Environment
that provides access to Adaptable Components.

Risk A potential for incurring undesirable results.

Specialization Constraining an abstraction to denote a subset.

Specification A complete, precise description of the verifiable
properties required of a work product.

Specification (Activity) The Application Modeling activity that analyzes
customer needs to produce an application model.
The Application Model expresses requirements and
engineering decisions that describe a system
intended to satisfy those needs.

Step Either an activity or an unelaborated action.

Structural constraint A constraint that limits the number of instances of a
decision group in a valid Application Model

Subdomain The denotation of a subfamily of systems for which a
corresponding domain denotes the larger family.

Subfamily A subset of the members of a family that have some
set of common characteristics not shared by any
members of the family outside that subset. See
subdomain.

Synthesis A methodology for the construction of software
systems as instances of a family of systems that have sirni-
lar descriptions. Its primary distinguishing features are:

" Formalization of domains as families of systems
that share many common features, but which
also vary in well-defined ways

" System building reduced to resolution of
requirements and engineering decisions that
represent the variations characteristic of a
domain

" Reuse of software artifacts through
mechanical adaptation of components to sat-
isfy requirements and engineering decisions

GIo-11



Glksry

Model-based analyses of described systems
to help understand the implications of
system-building decisions and evaluate alter-
natives

System A collection of hardware, software, and people that
operate together to accomplish a mission.

Task A work assignment (i.e., subject to management ac-
countability) to accomplish a specified objective.

Test scenario A test component, which includes test procedures
and test data artifacts.

User The person(s) or organization(s) that will use the sys-
tem for its intended purpose when it is deployed in its
environment.

Validation The evaluation of work products to determine
whether they satisfy customer needs.

Validation (Activity) The Application Modeling activity that produces
analyses of the degree to which alternative Application
Models satisfy the functional requirements of the
customer.

Variability A characteristic of a domain that corresponds to
features that distinguish among members of the
associated family of systems. See Commonality.

Verification The evaluation of a work product to determine
whether it meets its specification.

Viability The degree to which benefits of a feasible
undertaking dominate the costs of its performance,
taking into consideration risk-induced uncertainties.

Work product Any configuration-managed artifact.

GIo-12



REFERENCES

Baizer, Robert, and Principles of Good Software Specification and their Implicationsfor
Neil Goldman Specification Languages. USC/Information Sciences Institute.
1979

Booch, Grady Software Components with Ada. Menlo Park, California:
1987 Benjamin-Cummings.

Borgida, Alexander Features of Languages for the Development of Information
1985 Systems at the Conceptual Level. IEEE Software 1:63-72.

Burkhard, Neil Domain Engineering Validation Case Study-Synthesis for the Air
1992 Traffic DisplaylColiision Warning Monitor Domain,

SPC-92050-CMC. Herndon, Virginia: Software Productivity
Consortium.

Campbell, Grady H., Jr. Abstraction-Based Reuse Repositores, REUSEREPOSITORIES-
1989 89041-N. Herndon, V'nginia: Software Productivity Consortium.

Campbell, Grady H., Jr., Inrovduction to Sywth.i, INTROSYNTHESIS PROCESS-
Stuart R. Faulk, and 90019-N. Herndon, Virginia: Software Productivity Consortium.
David M. Weiss
1990

Davis, Alan M., A Strategy for Comparing Alternative Software Development
Edward H. Bersoff, and Life Cycle Models. IEEE Transactions on Software Engineering
Edward R. Comer SE-14:1453-61.
1988

Department of Defense Miitary Standard: Defense System Software Development (DOD-
1988 STD-2167A). Washington, D.C.: Department of Defense.

Dijkstra, E.W, OJ. Dahl, and "Notes on Structured Progammning." In Sructured Programming,
CAR. Hoare, eds. 1-82. LondonEngland: Academic Press.
1972

Eward, Mary, and "Introducing Megaprogramming at the High School and Under-
Steven Wartik graduate Levels." Seventh SEI Conference on Software Engineer-
1994 ing Education. San Antonio, Texas. To be published in January

1994.

Heninger, Kathryn L. Specifying Software Requirements for Complex Systems: New
1980 Techniques and Their Application. IEEE Transactions on

Software Engineering SE-6: 2-13.

Ref-1



Heninger, Kathryn, Software Requirements for the A-7E Aircraft. Memorandum
J. Kallander, David L. Parnas, Report 3876. Washington, D.C.: Naval Research Laboratory.
and John Shore
1978

Humphrey, Watts S. Managing the Software Process. Reading, Massachusetts:
1989 Addison-Wesley Publishing Company.

Kent, William Data and Rea/iy. North Holland, Amsterdam.

1978

O'Connor, James, and Introducing Systematic Reuse to the Command and Control
Catharine Mansour Systems Division of Rockwell Intemational, SPC-92020-N. Hern-
1992 don, Virginia: Software Productivity Consortium.

Parnas, David L. On the Design and Development of Program Families. IEEE
1976 Transactions on Software Engineering SE-2:1-9.

Software Productivity Synthesis Guidebook, SPC-91122-MC. Herndon, Virginia:
Consortium Software Productivity Consortium.
1991a

1991b Systematic Reuse: The Competitive Edge, SPC-91047-N.
Herndon, Virginia: Software Productivity Consortium.

1992a Domain Engineering Guidebook, SPC-92019-CMC, version
01.00.03. Herndon, Virginia: Software Productivity Consortium.

1992b Process Engineering with the Evolutionary Spiral Process Model,
SPC-92079-CMC. Herndon, Virginia: Software Productivity
Consortium.

1992c Reuse Adoption Guidebook, SPC-92051-CMC. Herndon,
Virginia: Software Productivity Consortium.

1993 ADARTS Guidebook, SPC-91104-MC, version 03.00.09. Hemdon,
Virginia: Software Productivity Consortium.

Wartik, Steven, and Criteria for Comparing Reuse-Oriented Domain Analysis
Ruben Prieto-Dfaz Approaches. International Journal of Software Engineering and
1992 Knowledge Engineering 2, 3: 403-431.

Winograd, Terry Beyond Programming Languages. Communications oftheACM
1979 22: 391-401.

Ref-2


